Introduction

Transition-metal-catalyzed cross-couplings are recognized to be the most powerful carbon–carbon bond forming reactions. The palladium-catalyzed coupling of aryl halides, arylsulfonates with aryl/alkyl metals (such as M = B, Sn, Zn, Si, Mg) are very often employed in the synthesis of compounds, the skeletons of which are found in a wide range of important natural products and analogues of biological interest. Before 1990, the insertion of palladium into C–Br and C–I bonds was well exploited. However, the same reaction with C–Cl bonds proved to be very difficult. Organochloride compounds are less expensive than the other organohalides, and would thus be most interesting partners in cross-coupling reactions. Fu and co-workers have shown that electron-rich ligands such as tri-tert-butylphosphine \(\text{P(}t\text{-Bu})_3 \) allow the metal insertion into C–Cl bonds at or above room temperature. Subsequent transmetalations with organoboron, organotin, organozinc, organocupper and organosilicon reagents and final reductive elimination give the corresponding products of C–C cross-couplings. Littke and Fu showed that arylation of olefins can be catalyzed by the same Pd/P\((t\text{-Bu})_3 \) system.

Other convenient ligands have been proposed to promote the palladium oxidative addition of aryl chlorides. Most common today are bulky, electron-rich chelating bisphosphines as those proposed by Milstein, bulky and electron-rich phosphines proposed by Buchwald, the palladacycles and N-heterocyclic carbenes proposed by Herrmann, as well as the phosphites proposed by Beller.

Preparation

\(\text{P(}t\text{-Bu})_3 \) 1 can be easily prepared by a two-step sequence starting with addition of tert-butylmagnesium chloride to \(\text{PCl}_3 \) (Scheme 1). Chloro-di-tert-butylphosphine thus obtained is then reacted with 1.2 equiv of tert-butyl lithium to produce desired product 1. The \(pK_a \) of \(\text{P(}t\text{-Bu})_3 \) was found to be 11.4. Thus, P\((t\text{-Bu})_3 \) appears to be one of the most basic phosphines, leading to a particular behaviour as ligand in numerous catalyzed reactions.

\[
\begin{align*}
\text{MgCl} &\quad \text{Et}_2\text{Cl} \quad 20 \degree \text{C} \quad 34\% \\
\text{PCl}_3 \quad 20 \degree \text{C} \quad &\quad \text{P} \quad \text{Cl} \\
\text{tBuLi} \quad \text{(Pentane)} &\quad \text{Et}_2\text{Cl} \quad 0 \degree \text{C} \quad 50\% \\
\text{P(}t\text{-Bu})_3 &\quad \text{P(}t\text{-Bu})_3
\end{align*}
\]

Scheme 1

This ligand is available from Strem company as a 10% solution (w/w) in hexane or in dioxane. Although it is also available in pure form from other commercial sources, it is conveniently used as a solution, since only a small amount of ligand is usually needed and also because it is most air sensitive in its pure form. The reagent can be stored at low temperature and must be manipulated in a glove box or under a nitrogen flow.

SYNLETT 2005, No. 4, pp 0709–0710
Advanced online publication: 22.02.2005
DOI: 10.1055/s-2005-863725; Art ID: V11605ST
© Georg Thieme Verlag Stuttgart · New York
Abstracts

(A) The Buchwald–Hartwig amination of aryl halides was realized for the first time in 1998 using Pt(r-Bu)₃, as ligand to the palladium catalyst.⁹ Fu and co-workers extended the scope of Pt(r-Bu)₃, as ligand for other types of palladium-catalyzed coupling reactions of aryl chlorides. These authors reported the reactions of triflates and aryl chlorides in Suzuki–Miyaura, ¹⁰ Stille, ¹¹ Negishi, ¹² and other C–C cross-coupling reactions.

Recently, we found that arenecatenols and aryl chlorides can be used in the desulfitative Suzuki–Miyaura ¹³ and Stille ¹⁴ cross-coupling reactions. In these cases, good results were also obtained using Pt(r-Bu)₃, as ligand to the palladium catalyst.

(B) Typical reaction conditions for the Sonogashira–Hagihara cross-coupling of terminal acetylenes and aryl bromides require high temperatures and CuI as a co-catalyst. Using Pt(r-Bu)₃, ligand, Fu and Buchwald showed that electron-rich aryl bromides can react already at room temperature. ¹⁵b Herrmann and co-workers, ¹⁵b as well as chemists of Merck company, ¹⁵c showed that the use of CuI can be avoided in these reactions. Aryl chlorides can be reacted at higher temperature using the same ligand. ¹⁵a We have shown that the desulfitative Sonogashira–Hagihara reactions with arenecatenols can be carried out in the presence of CuI, with 3 mol% Pd₂(dba)₃ and 10 mol% Pt(r-Bu)₃, ¹⁶

(C) Littke and Fu have shown the Heck–Mizoroki reactions can couple aryl chlorides with mono- or disubstituted olefins giving the corresponding arylated products with high stereoselectivity. This requires the use of Pt(r-Bu)₃ ligand to the palladium and Cy₂NMe as base. ¹⁷ The Pd/P(r-Bu)₃ system is also a good catalyst in the desulfitative Heck–Mizoroki arylation reactions with arenecatenol chlorides. ¹⁸

(D) Recently, Sakei and co-workers have used 1-aryltriazenes as electrophilic partners in cross-coupling reactions. For instance, the reaction of arylenamines and arenesulfonylic acids in the presence of a catalytic amount of Pd₂(dba)₃ and P(r-Bu)₃ gives the corresponding biaryl. ¹⁹ Similariy, the 1-aryltriazenes can be cross-coupled with arenecatenols and alkenyltrifluorosilanes under the same conditions. ²⁰

References

(14) TFP and Pt(r-Bu)₃ have shown the same efficiency in a catalytic system: (a) Dubbaka, S. R.; Vogel, P. J. Am. Chem. Soc. 2003, 125, 15292. (b) Dubbaka, S. R.; Steunenberg, P.; Vogel, P. Synlett 2004, 1253.

