Int J Sports Med 2006; 27(3): 226-231
DOI: 10.1055/s-2005-865647
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Heart Rate Variability and Performance at Two Different Altitudes in Well-Trained Swimmers

L. Schmitt1 , P. Hellard2 , G. P. Millet3 , B. Roels3 , J. P. Richalet4 , J. P. Fouillot4
  • 1Nordic Ski National Centre, Prémanon, Les Rousses, France
  • 2French Swimming Federation, Paris, France
  • 3EA 3759 - Faculty of Sport Sciences, Montpellier, France
  • 4EA 2363, ARPE - University Paris, Bobigny cedex, France
Further Information

Publication History

Accepted after revision: March 3, 2005

Publication Date:
30 August 2005 (online)

Abstract

The aim of this study was to compare the effects of training at two different altitudes on heart rate variability (HRV) and performance in well-trained swimmers. Eight national-level male swimmers (age = 17.0 ± 1.8 yrs, weight = 67.0 ± 6.6 kg, height = 180.4 ± 7.2 cm, V·O2max = 60.4 ± 4.0 ml · min-1 · kg-1) trained 17 days at 1200 m altitude (T1200), then, after 6 weeks of moderate training at sea level, reproduced the same training plan at 1850 m (T1850). The training was mainly aerobic with 86 % and 84 % ≤ anaerobic threshold for T1200 and T1850, respectively. Four HRV analysis tests were performed during T1200 and T1850, respectively (pre-test = day 0, test 2 = day 5, test 3 = day 11, post-test = day 17), in supine and standing position. Performance was measured over a 2000-m freestyle test at the altitude of 1200 m. A difference in HRV changes was observed between the two altitudes: during T1200, addition of parasympathetic and sympathetic activity in supine (TPSU) (p < 0.05) and standing (TPST) (p < 0.05) position, supine parasympathetic activity (HFSU) (p < 0.05), and standing sympathetic activity (LFST) (p < 0.05) were increased and the 2000-m performance was improved (p < 0.05) whereas none of these parameters was changed during T1850. Change in performance was correlated with increase in HFSU (r = 0.73; p < 0.05) and tended towards correlation with increase in LFST (r = 0.73; p = 0.06). Conclusion: the same training loads induced a positive effect on HRV and performance at 1200 m but not at 1850 m. This may be the consequence of greater stress due to an interaction between greater hypoxic stimulus and the same training loads. These results highlight two opposing effects: aerobic training increases, whereas hypoxia decreases HFSU, due to the correlation between HRV and changes in performance during altitude training.

References

  • 1 Adams W C, Bernauer E M, Dill D B, Bomar J B. Effects of equivalent sea level and altitude training on V·O2 and running performance.  J Appl Physiol. 1975;  39 262-266
  • 2 Akselrod S, Gordon D, Ubel F, Shannon D, Berger A C, Cohen R J. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control.  Science. 1981;  10 220-222
  • 3 Al-Ani M, Munir S M, White M, Townend J, Coote J H. Changes in R-R variability before and after endurance training measured by power spectral analysis and by the effect of isometric muscle contraction.  Eur J Appl Physiol. 1996;  74 397-403
  • 4 Avalos M, Hellard P, Chatard J C. Modeling the training-performance relationship using a mixed model in elite swimmers.  Med Sci Sports Exerc. 2003;  35 838-846
  • 5 Bailey D M, Davies B, Romer L, Castell L, Newsholme E, Gandy G. Implications of moderate altitude training for sea-level endurance in elite distance runners.  Eur J Appl Physiol. 1998;  78 360-368
  • 6 Chapman R F, Stray-Gundersen J, Levine B D. Individual variation in response to altitude training.  J Appl Physiol. 1998;  85 1448-1486
  • 7 Clark S A, Aughey R J, Gore C J, Hahn A G, Townsend N E, Kinsman T A, Chow C M, McKenna M J, Hawley J A. Effects of live high, train low hypoxic exposure on lactate metabolism in trained humans.  J Appl Physiol. 2004;  96 517-525
  • 8 Dick F W. Training at altitude in practice.  Int J Sports Med. 1992;  13 203-206
  • 9 Fry R W, Morton A R, Keast D. Overtraining in athletes.  Sports Med. 1991;  12 32-65
  • 10 Hahn A G, Gore C J, Martin D T, Ashenden M J, Roberts A D, Logan P A. An evaluation of the concept of living at moderate altitude and training at sea level.  Comp Biochem Physiol A Physiol. 2001;  128 777-789
  • 11 Hautala A, Tulppo M P, Makikallio T H, Laukkanen R, Nissila S, Hui H V. Changes in cardiac autonomic regulation after prolonged maximal exercise.  Clin Physiol. 2001;  21 238-245
  • 12 Hedelin R, Bjerle P, Henriksson-Larsen K. Heart rate variability in athletes: relationship with central and peripheral performance.  Med Sci Sports Exerc. 2001;  33 1394-1398
  • 13 Iellamo F, Legramante J M, Pigozzi F, Spataro A, Norbiato G, Lucini D, Pagani M. Conversion from vagal to sympathetic predominance with strenuous training in high-performance world class athletes.  Circulation. 2002;  105 2719-2728
  • 14 Janicki J S, Sheriff D D, Robotham J L, Wise R A. Cardiac output during exercise: contributions of the cardiac, circulatory, and respiratory systems. Rowell LB, Shepherd JT Handbook of Physiology: Exercise Regulation and Integration of Multiple Systems. Sect. 12. New York; American Physiological Society 1996: 649-704
  • 15 Kenney W L. Endurance training increases vagal control heart rate. Dotson CO, Humphrey JH Exercise Physiology: Current Selected Research. New York; AMS Press 1988: 59-65
  • 16 Kuipers H. Training and overtraining: an introduction.  Med Sci Sports Exerc. 1998;  30 1137-1139
  • 17 Kunz D, Hoffkes H, Kunz W S, Gressner A M. Observational studies and randomized trials.  N Engl J Med. 2000;  343 1194-1195
  • 18 Lee C M, Wood R H, Welsch M A. Influence of short-term endurance exercise training on heart rate variability.  Med Sci Sports Exerc. 2003;  35 961-969
  • 19 Lehmann M, Foster C, Dickhuth H H, Gastmann U. Autonomic imbalance hypothesis and overtraining syndrome.  Med Sci Sports Exerc. 1998;  30 1140-1145
  • 20 Levine B D, Stray-Gundersen J. “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance.  J Appl Physiol. 1997;  83 102-112
  • 21 Marchant-Forde R M, Marlin D J, Marchant-Forde J N. Validation of a cardiac monitor for measuring heart rate variability in adult female pigs: accuracy, artefacts and editing.  Physiol Behav. 2004;  80 449-458
  • 22 Mazzuero G. Altitude in autonomic nervous system.  Ital Heart J. 2001;  2 845-849
  • 23 Miyashita M. Key factors in success of altitude training for swimming.  Res Q Exerc Sports. 1996;  67 76-78
  • 24 Mizuno M, Juel C, Bro-Rasmussen T, Mygind E, Schibye B, Rasmussen B, Saltin B. Limb skeletal muscle adaptation in athletes after training at altitude.  J Appl Physiol. 1990;  68 496-502
  • 25 Mujika I, Busso T, Lacoste L, Barale F, Geyssant A, Chatard J C. Modeled responses to training and taper in competitive swimmers.  Med Sci Sports Exerc. 1996;  18 251-258
  • 26 Nummela A, Rusko H. Acclimatization to altitude and normoxic training improve 400-m running performance at sea level.  J Sports Sci. 2000;  18 411-419
  • 27 Passino C, Bernardi L, Spadacini G, Calciati A, Robergs R, Anand I, Greene R, Martignoni E, Appenzeller O. Autonomic regulation of heart rate and peripheral circulation comparison of high altitude and sea level residents.  Clin Sci. 1996;  91 81-83
  • 28 Perini R, Milesi S, Biancardi L, Veicsteinas A. Effects of high altitude acclimatization on heart rate variability in resting humans.  Eur J Appl Physiol. 1996;  73 521-528
  • 29 Pichot V, Roche F, Gaspoz J M, Enjolras F, Antoniadis A, Minimi P, Costes F, Busso T, Lacour J R, Barthelemy J C. Relation between heart rate variability and training load in middle-distance runners.  Med Sci Sports Exerc. 2000;  32 1729-1736
  • 30 Pichot V, Busso T, Roche F, Garet M, Costes F, Duverney D, Lacour J R, Barthelemy J C. Autonomic adaptations to intensive and overload training periods: a laboratory study.  Med Sci Sports Exerc. 2002;  34 1660-1666
  • 31 Pomeranz M, Macaulay R JB, Caudill M A. Assessment of autonomic function in humans by heart rate spectral analysis.  Am J Physiol. 1985;  248 151-153
  • 32 Radespiel-Troger M, Rauh R, Mahlke C, Gottschalk T, Muck-Weymann M. Agreement of two different methods for measurement of heart rate variability.  Clin Auton Res. 2003;  13 99-102
  • 33 Rusko H. New aspects of altitude training.  Am J Sports Med. 1996;  24 48-52
  • 34 Saunders P U, Telford R D, Pyne D B, Cunningham R B, Gore C J, Hahn A G, Hawley J A. Improved running economy in elite runners after 20 days of simulated moderate-altitude exposure.  J Appl Physiol. 2004;  96 931-937
  • 35 Sevre K, Bendz B, Hanko E, Naksta A R, Hauge A, Kasin L L, Lefrandt J D, Smit A J, Eide I, Rostrup M. Reduced autonomic activity during stepwise exposure to high altitude.  Acta Physiol Scand. 2001;  173 409-417
  • 36 Shin K, Minamitani H, Onishi S, Yamazaki H, Myoungho Lee K. The power spectral analysis of heart rate variability in athletes during dynamic exercise.  Clin Cardiol. 1995;  18 583-586
  • 37 Task Force of the Europeen Society of Cardiology and the North American Society of Pacing and Electrophysiology . Heart rate variability: standards of measurement, physiological interpretation and clinical use.  Circulation. 1996;  93 1043-1065
  • 38 Terrados N, Mechichna J, Sylven C, Jansson E, Kaijer L. Effects of training at simulated altitude on performance and muscle metabolic capacity in competitive road cyclists.  Eur J Appl Physiol. 1988;  57 203-209
  • 39 Uusitalo A L, Uusitalo A J, Rusko H K. Endurance training, overtraining and baroreflex sensitivity in female athletes.  Clin Physiol. 1998;  18 510-520
  • 40 Yamamoto Y, Miyachi M, Saitoh T, Yoshioka A, Onodera S. Effects of endurance training on resting and post-exercise cardiac autonomic control.  Med Sci Sports Exerc. 2001;  33 1496-1502

L. Schmitt

Nordic Ski National Centre

Prémanon

39220 Les Rousses

France

Phone: + 33384607488

Fax: + 33 3 84 60 77 93

Email: laurent.schmitt@jeunesse-sports.gouv.fr

    >