Semin Thromb Hemost 2005; 31(2): 205-216
DOI: 10.1055/s-2005-869526
Published in 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel: +1(212) 584-4662.

Molecular Recognition at Adenine Nucleotide (P2) Receptors in Platelets

Kenneth A. Jacobson1 , 2 , Liaman Mamedova2 , Bhalchandra V. Joshi2 , Pedro Besada2 , Stefano Costanzi2
  • 1Chief, Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, Maryland
  • 2Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, Maryland
Further Information

Publication History

Publication Date:
26 April 2005 (online)

ABSTRACT

Transmembrane signaling through P2Y receptors for extracellular nucleotides controls a diverse array of cellular processes, including thrombosis. Selective agonists and antagonists of the two P2Y receptors present on the platelet surface-the Gq-coupled P2Y1 subtype and the Gi-coupled P2Y12 subtype-are now known. High-affinity antagonists of each have been developed from nucleotide structures. The (N)-methanocarba bisphosphate derivatives MRS2279 and MRS2500 are potent and selective P2Y1 receptor antagonists. The carbocyclic nucleoside AZD6140 is an uncharged, orally active P2Y12 receptor antagonist of nM affinity. Another nucleotide receptor on the platelet surface, the P2X1 receptor, the activation of which may also be proaggregatory, especially under conditions of high shear stress, has high-affinity ligands, although high selectivity has not yet been achieved. Although α,β-methylene-adenosine triphosphate (ATP) is the classic agonist for the P2X1 receptor, where it causes rapid desensitization, the agonist BzATP is among the most potent in activating this subtype. The aromatic sulfonates NF279 and NF449 are potent antagonists of the P2X1 receptor. The structures of the two platelet P2Y receptors have been modeled, based on a rhodopsin template, to explain the basis for nucleotide recognition within the putative transmembrane binding sites. The P2Y1 receptor model, especially, has been exploited in the design and optimization of antagonists targeted to interact selectively with that subtype.

REFERENCES

  • 1 Kunapuli S P, Ding Z, Dorsam R T et al.. ADP receptors-targets for developing antithrombotic agents.  Curr Pharm Des. 2003;  9 2303-2316
  • 2 Jacobson K A, Jarvis M F, Williams M. Perspective: purine and pyrimidine (P2) receptors as drug targets.  J Med Chem. 2002;  45 4057-4093
  • 3 Leon C, Ravanat C, Freund M, Cazenave J P, Gachet C. Differential involvement of the P2Y1 and P2Y12 receptors in platelet procoagulant activity.  Arterioscler Thromb Vasc Biol. 2003;  23 1941-1947
  • 4 Jagroop I A, Burnstock G, Mikhailidis D P. Both the ADP receptors P2Y1 and P2Y12, play a role in controlling shape change in human platelets.  Platelets. 2003;  14 15-20
  • 5 Hechler B, Lenain N, Marchese P et al.. A role of the fast ATP-gated P2X1 cation channel in thrombosis of small arteries in vivo.  J Exp Med. 2003;  198 661-667
  • 6 Costanzi S, Mamedova L, Gao Z G, Jacobson K A. Architecture of P2Y nucleotide receptors: structural comparison based on sequence analysis, mutagenesis, and homology modeling.  J Med Chem. 2004;  47 5393-5404
  • 7 Hoffmann C, Moro S, Nicholas R A, Harden T K, Jacobson K A. The role of amino acids in extracellular loops of the human P2Y1 receptor in surface expression and activation processes.  J Biol Chem. 1999;  274 14639-14647
  • 8 Moro S, Guo D, Camaioni E et al.. Human P2Y1 receptor: molecular modeling and site-directed mutagenesis as tools to identify agonist and antagonist recognition sites.  J Med Chem. 1998;  41 1456-1466
  • 9 Jiang Q, Guo D, Lee B X et al.. A mutational analysis of residues essential for ligand recognition at the human P2Y1 receptor.  Mol Pharmacol. 1997;  52 499-507
  • 10 Palmer R K, Boyer J L, Schacter J B, Nicolas R A, Harden T K. Agonist action of adenosine triphosphates at the human P2Y1 receptor.  Mol Pharmacol. 1998;  54 1118-1123
  • 11 Hollopeter G, Jantzen H M, Vincent D et al.. Identification of the platelet ADP receptor targeted by antithrombotic drugs.  Nature. 2001;  409 202-207
  • 12 Foster C J, Prosser D M, Agans J M et al.. Molecular identification and characterization of the platelet ADP receptor targeted by thienopyridine antithrombotic drugs.  J Clin Invest. 2001;  107 1591-1598
  • 13 Kim H S, Barak D, Harden T K, Boyer J L, Jacobson K A. Acyclic and cyclopropyl analogues of adenosine bisphosphate antagonists of the P2Y1 receptor: structure activity relationships and receptor docking.  J Med Chem. 2001;  44 3092-3108
  • 14 Palczewski K, Kumasaka T, Hori T et al.. Crystal structure of rhodopsin: A G protein-coupled receptor.  Science. 2000;  289 739-745
  • 15 Guo D, Von Kügelegen I, Moro S, Kim Y C, Jacobson K A. Evidence for the recognition of non-nucleotide antagonists within the transmembrane domains of the human P2Y1 receptor.  Drug Dev Res. 2002;  57 173-181
  • 16 Nicke A, Baumert H G, Rettinger J et al.. P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels.  EMBO J. 1998;  17 3016-3028
  • 17 Brown S, Townsend-Nicholson A, Jacobson K A, Burnstock G, King B F. Heteromultimeric P2X1/2 receptors show a novel sensitivity to extracellular pH.  J Pharmacol Exp Ther. 2002;  300 673-680
  • 18 Ennion S, Ritson J, Evans R J. Conserved negatively charged residues are not required for ATP action at P2X1 receptors.  Biochem Biophys Res Commun. 2001;  289 700-704
  • 19 Spelta V, Jiang L H, Bailey R J, Surprenant A, North R A. Interaction between cysteines introduced into each transmembrane domain of the rat P2X2 receptor.  Br J Pharmacol. 2003;  138 131-136
  • 20 Egan T M, Cox J A, Voigt M M. Molecular structure of P2X receptors.  Curr Top Med Chem. 2004;  4 821-829
  • 21 Cusack N J, Hourani S MO. Adenosine, adenine nucleotides, and platelet function. In: Phillis JW Adenosine and Adenine Nucleotides as Regulators of Cellular Function Boca Raton, FL; CRC Press 1991: 121-131
  • 22 Marteau F, Le Poul E, Communi D et al.. Pharmacological characterization of the human P2Y13 receptor.  Mol Pharmacol. 2003;  64 104-112
  • 23 Fischer B, Boyer J L, Hoyle C HV et al.. Identification of potent, selective P2Y-purinoceptor agonists: structure-activity relationships for 2-thioether derivatives of adenosine 5′-triphosphate.  J Med Chem. 1993;  36 3937-3946
  • 24 Bodor E T, Waldo G L, Hooks S B et al.. Purification and functional reconstitution of the human P2Y12 receptor.  Mol Pharmacol. 2003;  64 1210-1216
  • 25 Boyer J L, Siddiqi S, Fischer B et al.. Identification of potent P2Y-purinoceptor agonists that are derivatives of adenosine 5′-monophosphate.  Br J Pharmacol. 1996;  118 1959-1964
  • 26 Fischer B, Chulkin A, Boyer J L et al.. 2-thioether 5′-O-(1-thiotriphosphate) adenosine derivatives as new insulin secretagogues acting through P2Y-receptors.  J Med Chem. 1999;  42 3636-3646
  • 27 Nahum V, Zundorf G, Levesque S A et al.. Adenosine 5′-O-(1-boranotriphosphate) derivatives as novel P2Y1 receptor agonists.  J Med Chem. 2002;  45 5384-5396
  • 28 Nandanan E, Jang S Y, Moro S et al.. Synthesis, biological activity, and molecular modeling of ribose-modified deoxyadenosine bisphosphate analogues as P2Y1 receptor ligands.  J Med Chem. 2000;  43 829-842
  • 29 Kim H S, Ravi R G, Marquez V E et al.. Methanocarba modification of uracil and adenine nucleotides: high potency of northern ring conformation at P2Y1, P2Y2, or P2Y4 and P2Y11, but not P2Y6 receptors.  J Med Chem. 2002;  45 208-218
  • 30 Ravi R G, Kim H S, Servos J et al.. Adenine nucleotide analogues locked in a northern methanocarba conformation: enhanced stability and potency as P2Y1 receptor agonists.  J Med Chem. 2002;  45 2090-2100
  • 31 Chhatriwala M, Ravi R G, Patel R I et al.. Induction of novel agonist selectivity for the ADP-activated P2Y1 receptor versus the ADP-activated P2Y12 and P2Y13 receptors by conformational constraint of an ADP analogue.  J Pharmacol Exp Therap. 2004;  311 1038-1043
  • 32 Boyer J L, Romero-Avila T, Schachter J B, Harden T K. Identification of competitive antagonists of the P2Y1-receptor.  Mol Pharmacol. 1996;  50 1323-1329
  • 33 Brown S G, King B F, Kim Y C, Burnstock G, Jacobson K A. Activity of novel adenine nucleotide derivatives as agonists and antagonists at recombinant rat P2X receptors.  Drug Dev Res. 2000;  49 253-259
  • 34 Mathieu R, Baurand A, Schmitt M, Gachet C, Bourguignon J J. Synthesis and biological activity oif 2-alkylated deoxyadenosine bisphosphate derivatives as P2Y1 receptor antagonists.  Bioorg Med Chem. 2004;  12 1769-1779
  • 35 Boyer J, Adams M, Ravi R G, Jacobson K A, Harden T K. 2-chloro N6-methyl-(N)-methanocarba-2′-deoxyadenosine-3′,5′-bisphosphate is a selective high affinity P2Y1 receptor antagonist.  Br J Pharmacol. 2002;  135 2004-2010
  • 36 Waldo G L, Corbitt J, Boyer J L et al.. Quantitation of the P2Y1 receptor with a high affinity radiolabeled antagonist.  Mol Pharmacol. 2002;  62 1249-1257
  • 37 Baurand A, Raboisson P, Freund M et al.. Inhibition of platelet function by administration of MRS2179, a P2Y1 receptor antagonist.  Eur J Pharmacol. 2001;  412 213-221
  • 38 Kim H S, Ohno M, Xu B et al.. 2-Substitution of adenine nucleotide analogues containing a bicyclo[3.1.0]hexane ring system locked in a Northern conformation: Enhanced potency as P2Y1 receptor antagonists.  J Med Chem. 2003;  46 4974-4987
  • 39 Cattaneo M, Lecchi A, Joshi B V et al.. Antiaggregatory activity in human platelets of potent antagonists of the P2Y1 receptor.  Biochem Pharmacol. 2004;  68 1995-2002
  • 40 Raboisson P, Baurand A, Cazenave J P et al.. A general approach toward the synthesis of C-nucleoside pyrazolo[1,5-a]-1,3,5-triazines and their 3′,5′-bisphosphate C-nucleotide analogues as the first reported in vivo stable P2Y1-receptor antagonists.  J Org Chem. 2002;  67 8063-8071
  • 41 Kim H S, Barak D, Harden T K, Boyer J L, Jacobson K A. Acyclic and cyclopropyl analogues of adenosine bisphosphate antagonists of the P2Y1 receptor: structure activity relationships and receptor docking.  J Med Chem. 2001;  44 3092-3108
  • 42 Xu B, Stephens A, Kirschenheuter G et al.. Acyclic analogues of adenosine bisphosphates as P2Y receptor antagonists: phosphate substitution leads to multiple pathways of inhibition of platelet aggregation.  J Med Chem. 2002;  45 5694-5709
  • 43 Charlton S J, Brown C A, Weisman G A et al.. PPADS and suramin as antagonists at cloned P2Y- and P2U-purinoceptors.  Br J Pharmacol. 1996;  118 704-710
  • 44 Lambrecht G, Ganso M, Baumert H G et al.. The novel heteromeric bivalent ligand SB9 potently antagonizes P2Y1 receptor-mediated responses.  J Auton Nerv Syst. 2000;  81 171-177
  • 45 Taniguchi M, Nagai K, Arao N et al.. YM-254890, a novel platelet aggregation inhibitor produced by Chromobacterium sp. QS3666.  J Antibiot. 2003;  56 358-363
  • 46 Glänzel M, Bültmann R, Starke K, Frahm A W. Members of the acid blue 129 family as potent and selective P2Y-receptor antagonists.  Drug Dev Res. 2003;  59 64-71
  • 47 Brown J, Brown C A. Evaluation of reactive blue 2 derivatives as selective antagonists for P2Y receptors.  Vascul Pharmacol. 2002;  39 309-315
  • 48 King B F, Dacquet C, Ziganshin A U et al.. Potentiation by 2,2′-pyridylisatogen tosylate of ATP-responses at a recombinant P2Y1 purinoceptor.  Br J Pharmacol. 1996;  117 1111-1118
  • 49 Gao Z G, Mamedova L, Tchilibon S, Gross A S, Jacobson K A. 2,2′-pyridylisatogen tosylate antagonizes P2Y1 receptor signaling without affecting nucleotide binding.  Biochem Pharmacol. 2004;  68 231-237
  • 50 Mamedova L, Joshi B V, Gao Z G, von Kügelgen I, Jacobson K A. Diisothiocyanate derivatives as potent, insurmountable antagonists of P2Y6 nucleotide receptors.  Biochem Pharmacol. 2004;  67 1763-1770
  • 51 Ingall A H, Dixon J, Bailey A. Antagonists of the platelet P2T receptor: a novel approach to antithrombotic therapy.  J Med Chem. 1999;  42 213-220
  • 52 Communi D, Robaye B, Boeynaems J M. Pharmacological characterization of the human P2Y11 receptor.  Br J Pharmacol. 1999;  128 1199-1206
  • 53 Springthorpe B. From ATP to AZD6140: design of an orally active P2Y12 (P2T) receptor antagonist for the treatment of thrombosis. Paper presented at: 225th ACS National Meeting, Division of Medicinal Chemistry, march 23-27. March 23-21, 2003 New Orleans, LA; 16
  • 54 Savi P, Pereillo J M, Uzabiaga M F et al.. Identification and biological activity of the active metabolite of clopidogrel.  Thromb Haemost. 2000;  84 891-896
  • 55 Sugidachi A, Asai F, Yoneda K et al.. Antiplatelet action of R-99224, an active metabolite of a novel thienopyridine-type Gi-linked P2T antagonist, CS-747.  Br J Pharmacol. 2001;  132 47-54
  • 56 Scarborough R M, Laibelman A M, Clizbe L A et al.. Novel tricyclic benzothiazolo[2,3-c]thiadiazine antagonists of the platelet ADP receptor (P2Y12).  Bioorg Med Chem Lett. 2001;  11 1805-1808
  • 57 Fretz H, Houille O, Hilpert K, Peter O, Breu V et al.. Novel pyrazolidinc-3,5-dione derivatives are P2Y12 receptor antagonists and inhibit ADP-triggered blood platelet aggregation. Paper presented at: American Chemical Society 229th National Meeting, march 13 2005 SanDiego, CA;
  • 58 Douglass J, Patel R I, Redick C et al.. Ribose and nucleobase modifications to nucleotides that confer antagonist properties against the P2Y12 platelet receptor.  Haematologica. 2002;  87(suppl 1) 22 (abst)
  • 59 Cusack N J, Hourani S MO. Structure activity relationships for adenine nucleotide receptors on mast cells, human platelets, and smooth muscle. In: Jacobson KA, Daly JW, Manganiello V Purines in Cellular Signalling: Targets for New Drugs New York; Springer 1990: 254-259
  • 60 Zamecnik P C, Kim B, Gao M J, Taylor G, Blackburn G M. Analogues of diadenosine 5′,5′″-P1,P4-tetraphosphate (Ap4A) as potential anti-platelet-aggregation agents.  Proc Natl Acad Sci U S A. 1992;  89 2370-2373
  • 61 King B F. Molecular biology of P2X purinoreceptors. In: Burnstock G, Dobson JG Jr, Liang BT, Linden J Cardiovascular Biology of Purines Boston; Kluwer Academic Publishers 1998: 159-186
  • 62 Bianchi B R, Lynch K J, Touma E et al.. Pharmacological characterization of recombinant human and rat P2X receptor subtypes.  Eur J Pharmacol. 1999;  376 127-138
  • 63 Cinkilic O, King B F, van der Giet M et al.. Selective agonism of group I P2X receptors by dinucleotides dependent on a single adenine moiety.  J Pharmacol Exp Ther. 2001;  299 131-136
  • 64 Lambrecht G, Braun K, Damer M et al.. Structure-activity relationships of suramin and pyridoxal-5′-phosphate derivatives as P2 receptor antagonists.  Curr Pharm Des. 2002;  8 2371-2399
  • 65 Braun K, Rettinger J, Ganso M, Kassack M et al.. NF449: a subnanomolar potency antagonist at recombinant rat P2X1 receptors.  Naunyn Schmiedebergs Arch Pharmacol. 2001;  364 285-290
  • 66 Kassack M U, Braun K, Ganso M et al.. Structure-activity relationships of analogues of NF449 confirm NF449 as the most potent and selective known P2X1 receptor antagonist.  Eur J Med Chem. 2004;  39 345-357
  • 67 Kim Y C, Brown S G, Harden T K et al.. Structure-activity relationships of pyridoxal phosphate derivatives as potent and selective antagonists of P2X1 receptors.  J Med Chem. 2001;  44 340-349
  • 68 Brown S G, Kim Y C, Kim S A et al.. Actions of a series of PPADS analogs at P2X1 and P2X3 receptors.  Drug Dev Res. 2001;  53 281-291
  • 69 Surprenant A, Schneider D A, Wilson H L, Galligan J J, North R A. Functional properties of heteromeric P2X(1/5) receptors expressed in HEK cells and excitatory junction potentials in guinea-pig submucosal arterioles.  J Autonom Nerv Syst. 2000;  81 249-263
  • 70 King B F, Liu M, Pintor J et al.. Diinosine pentaphosphate (IP5I) is a potent antagonist at recombinant rat P2X1 receptors.  Br J Pharmacol. 1999;  128 981-988

 Dr.
Kenneth Jacobson

Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health

Bldg. 8A, Rm. B1A-19, Bethesda, MD 20892-0810

Email: kajacobs@helix.nih.gov

    >