Synthesis 2005(10): 1555-1568  
DOI: 10.1055/s-2005-869903
REVIEW
© Georg Thieme Verlag Stuttgart · New York

Resolution of Enantiomers by Non-Conventional Methods

Elemér Fogassy*a, Mihály Nógrádi*b, Emese Pálovicsc, József Schindlerc
a Institute for Organic Chemical Technology, Technical University of Budapest, P.O.Box 91, Budapest, Hungary
b Institute for Organic Chemistry, Technical University of Budapest, P.O.Box 91, Budapest, Hungary
c Research Group for Organic Chemical Technology, Budapest University of Technology and Economics, P.O.Box 91, Budapest, Hungary
Fax: +36(1)2463648; e-Mail: epalo@mail.bme.hu;
Further Information

Publication History

Received 12 January 2005
Publication Date:
18 May 2005 (online)

Abstract

Despite unprecedented advances in enantioselective synthesis and separation techniques, large scale production of enantiopure substances, such as required by the pharmaceutical and pesticide industries, is still heavily dependent upon the separation of diastereomers obtained from the enantiomers and an optically active resolving agent. Economy of the process can be much enhanced when only a half-equivalent of the resolving agent is used. Substitution of the other half-equivalent by some achiral compound, as well as separation of the unreacted portion of the substrate from the diastereomer by various physical methods, is discussed. Methods for selecting optimal conditions of resolution and for the purification of partially resolved mixtures are also discussed.

  • 1 Introduction and Historical Background

  • 2 Resolution Methods Using a Half-Equivalent of Resolving Agent

  • 3 Selection of the Optimal Resolving Agent and Solvent

  • 4 Phase Transformations of Diastereomeric Salts or Complexes (Kinetic and Thermodynamic Control)

  • 5 Resolution by Formation of Covalently Bound Diastereo­mers

  • 6 Racemization of an Unwanted Enantiomer

  • 7 Deracemization

  • 8 Resolution of Conglomerate-Forming Racemates by Induced Crystallization

  • 9 Purification of Partially Resolved Mixtures by Crystallization of Conglomerate-Forming and Racemic-Phase-Forming Compounds

  • 10 Purification of a Partially Resolved Mixture of Racemic-Phase-Forming Enantiomers by Fractional Precipitation

  • 11 Resolution by Supercritical Fluid Extraction or Distillation

  • 12 The Non-Linear Character of the Resolution Processes

    References

  • 2a Stereoselective Synthesis, In Houben-Weyl Methods of Organic Synthesis   Vol. E21a-E21f:  Helmchen G. Hoffmann RW. Mulzer J. Schaumann EG. Georg Thieme Verlag; Stuttgart, New York: 1996. 
  • 2b Stereoselective Synthesis, A Practical Approach   Nógrádi M. VCH; Weinheim: 1995. 
  • 4 Pasteur L. C. R. Hebd. Seances Acad. Sci.  1853,  37:  162 
  • 5 Pope WJ. Peachey SJ. J. Chem. Soc.  1899,  75:  1066 
  • 6a inventors; Hung. Patent  146896.  , Chem. Abstr. 1958, 54, 11287
  • 6b inventors; Hung. Patent  163526.  , Chem. Abstr. 1984, 79, 104924
  • 7 inventors; Hung. Patent  177583.  , Chem. Abstr. 1978, 96, 6258
  • 8 inventors; Ger. Patent  1274586.  , Chem. Abstr. 1968, 71, 50521
  • 9 Cai D. Hughes DL. Verhoeven TR. Reider PJ. In Organic Syntheses, Vol. 76   Martin SF. John Wiley & Sons; New York: 1998.  p.1 
  • 10 Brandt J. Gais H.-J. Tetrahedron: Asymmetry  1997,  8:  909 
  • 11a inventors; Hung. Patent  178516.  , Chem. Abstr. 1978, 97, 38959
  • 11b Fogassy E. Ács M. Tóth G. Simon K. Láng T. Ladányi L. Párkányi L. J. Mol. Struct.  147,  143 
  • 12a inventors; Hung. Patent  169845.  , Chem. Abstr. 1974, 85, 192335
  • 12b Ács M. Kozma D. Fogassy E. Ach. Mod. Chem.  1995,  132:  475 
  • 13 Rábay J. Angew. Chem., Int. Ed. Engl.  1992,  31:  1631 
  • 14 Fogassy E. Ács M. Szili T. Simándi B. Sawinsky J. Tetrahedron Lett.  1994,  35:  257 
  • 15 Simon H. Ph.D. Dissertation   Technical University, Budapest; Hungary: 2003. 
  • 16 Tanaka K. Kato M. Toda F. Heterocycles  2001,  54:  405 
  • 17 Kobayashi Y. Kodama K. Saigo K. Org. Lett.  2004,  6:  2941 
  • 18 Kassai Cs. Ph.D. Dissertation   Technical University, Budapest; Hungary: 2000. 
  • 19 Ács M. Mravik A. Fogassy E. Böcskei Zs. Chirality  1994,  6:  314 
  • 20a Optical Resolutions via Diastereomeric Salt Formation   Kozma D. CRC Press; London: 2002. 
  • 20b Faigl F. Kozma D. In Enantiomer Separation: Fundamentals and Practical Methods   Toda F. Kluwer Academic Press; Dordrecht: 2004. 
  • 21 Kozsda KE. Keserž Gy. Böcskei Zs. Szilágyi J. Simon K. Bertók B. Fogassy E. J. Chem. Soc., Perkin Trans. 2  2000,  149 
  • 22a inventors; Hung. Patent  214720.  , Chem. Abstr. 1995, 124, 117097
  • 22b inventors; US Patent  02133894.  , Chem. Abstr. 2001, 139, 90595
  • 23 Bálint J. Egri G. Kiss V. Gajáry A. Juvancz Z. Fogassy E. Tetrahedron: Asymmetry  2001,  12:  3435 
  • 24 Sakai K. Sakurai R. Hirayama N. Tetrahedron: Asymmetry  2004,  15:  1073 
  • 25 Sakai K. Sakurai R. Yuzawa A. Hirayama N. Tetrahedron: Asymmetry  2003,  14:  3713 
  • 26 Sakai K. Sakurai R. Nohira H. Tanaka R. Hirayama N. Tetrahedron: Asymmetry  2004,  15:  3495 
  • 27 Schanz HJ. Linseis MA. Gilheany DG. Tetrahedron: Asymmetry  2003,  14:  2767 
  • 28 Sakai K. Sakurai R. Yuzawa A. Kobayashi Y. Saigo K. Tetrahedron: Asymmetry  2003,  14:  1631 
  • 29a Fogassy E. Lopata A. Faigl F. Ács M. Darvas F. Tőke L. Tetrahedron Lett.  1980,  21:  647 
  • 29b Fogassy E. Faigl F. Ács M. Grofcsik A. J. Chem. Res., Synop.  1981,  11:  346 ; J. Chem. Res., Miniprint 1981, 11, 3981
  • 29c Fogassy E. Faigl F. Ács M. Tetrahedron  1985,  41:  2837 
  • 30 Kozma D. Pokol G. Ács M. J. Chem. Soc., Perkin Trans. 2  1992,  435 
  • 31 Fogassy E. Kozma D. Tetrahedron Lett.  1995,  36:  5069 
  • 32 Bálint J. Egri G. Vass G. Schindler J. Gajáry A. Friesz A. Fogassy E. Tetrahedron: Asymmetry  2000,  11:  809 
  • 33 inventors; Hung. Patent  193199.  , Chem. Abstr. 1984, 104, 168835
  • 34 Gizur T. Péter I. Harsányi K. Fogassy E. Tetrahedron: Asymmetry  1996,  7:  1589 
  • 35 Kaptein B. Elsenberg H. Grimbergen RFP. Broxterman QB. Hulshof LA. Vries T. Tetrahedron: Asymmetry  2000,  11:  1343 
  • 36 Vries T. Wynberg H. van Echten E. Kock J. ten Hoeve W. Kellogg RM. Broxterman QB. Minnard A. Kaptein B. van der Sluis S. Hulshof LA. Angew. Chem. Int. Ed.  1998,  37:  2349 
  • 37 Kellogg RM. Nieuwenhuijzen WJ. Pouwer K. Vries T. Broxterman QB. Grimbergen RFP. Kaptein B. La Crois RM. de Wever E. Zwaagstra K. van der Laan A. Synthesis  2003,  1626 
  • 38 Liu A. Mok KF. Leung PH. Chem. Commun.  1997,  2397 
  • 39 Mravik A. Chem. Eur. J.  1998,  4:  1621 
  • 40 Várkonyi SE. Takács K. Hermecz I. J. Heterocycl. Chem.  1997,  34:  1064 
  • 41 Robinson DEJE. Bull SD. Tetrahedron: Asymmetry  2003,  14:  1407 
  • 42 Eames I. Angew. Chem. Int. Ed.  2000,  39:  885 
  • 43 inventors; Hung. Patent  195174.  , Chem. Abstr. 1984, 102, 61849
  • 44 Tsunoda T. Kaku H. Nagaku M. Okuyama E. Tetrahedron Lett.  1997,  38:  7759 
  • 45 Enantiomers, Racemates and Resolutions   Jacques J. Collet A. Wilen SH. Wiley; New York: 1981. 
  • 46 Stereochemistry of Organic Compounds   Eliel EL. Wilen SH. Wiley; New York: 1994. 
  • 47 Pasteur L. Ann. Chim. Phys.  1848,  24:  442 
  • 48 Mravik A. Lepp Zs. Fogassy E. Tetrahedron: Asymmetry  1996,  718:  2387 
  • 49a Pincock RE. Wilson KR. J. Am. Chem. Soc.  1971,  93:  1291 
  • 49b Kondepudi DK. Laudadio J. Asakura K. J. Am. Chem. Soc.  1999,  121:  1448 
  • 50a inventors; Hung. Patent  179452.  , Chem. Abstr. 1978, 97, 6331
  • 50b Fogassy E. Ács M. Tóth G. Simon K. Láng T. Ladányi L. Párkányi L. J. Mol. Struct.  1986,  147:  143 
  • 51 Dolchi C. Fumagalli L. Moroni B. Pallavicini M. Valoti E. Tetrahedron: Asymmetry  2003,  14:  3779 
  • 52 Tamura R. Fujimoto D. Lepp Z. Misaki K. Miura H. Takahasi H. Ushio T. Nakai T. Hirotsu K. J. Am. Chem. Soc.  2002,  124:  13139 
  • 53a inventors; Hung. Patent  181416.  , Chem. Abstr. 1979, 99, 22300
  • 53b Ács M. Pokol Gy. Faigl F. Fogassy E. J. Therm. Anal.  1988,  33:  1241 
  • 54 Ács M. Fogassy E. Faigl F. Tomor K. Simon K. Marsó K. Mol. Cryst. Liq. Cryst.  1988,  156:  193 
  • 55 Simon H. Kassai Cs. Madarász Z. Fogassy E. Kozma D. Chirality  2001,  13:  29 
  • 56 Noyori R. J. Am. Chem. Soc.  1995,  117:  2675 
  • 57 Girard C. Kagan HB. Angew. Chem. Int. Ed.  1998,  37:  2922 ; Angew. Chem. 1998, 110, 3088
  • 58 Kozma D. Fogassy E. Mol. Cryst. Liq. Cryst.  1996,  276:  25 
  • 59 Markovits I. Egri G. Fogassy E. Chirality  2002,  14:  674 
  • 60a Kozma D. Madarász Z. Ács M. Fogassy E. Chirality  1995,  7:  381 
  • 60b Kozma D. Simon H. Kassai Cs. Madarász Z. Fogassy E. Chirality  2001,  13:  29 
1

Present-day nomenclature will be used throughout this review.

3

Catalog prices, 2004: (R)-1,1′-binaphthol: ı 44/g; (R)-2,2′-bis(diphenylphosphino)-1,1′-binaphthalene (BINAP): ı 335/g; (-)-α-pinene: ı 12/g; (+)-α-pinene: ı 13/g; (+)-1,4-bis(diphenylphospino)-1,4-dideoxy-2,3-O-isopropylidene-d-threitol [(+)-DIOP]: ı 118/g; (R,R)-tartaric acid: ı 46/100 g; (S,S)-tartaric acid: ı 70/100 g; dibenzoyl-(R,R)-tartaric acid: ı 81/100 g; (S)-lactic acid: ı 33/kg; (R)-1-phenylethylamine: ı 82/100 mL; (R)-1-phenylethylamine: ı 84/100 g; brucine hydrate: ı 83/100 g; quinine: ı112/100 g.