Horm Metab Res 2005; 37(6): 375-379
DOI: 10.1055/s-2005-870152
Review
© Georg Thieme Verlag KG Stuttgart · New York

Menin and TGF-β Superfamily Member Signaling via the Smad Pathway in Pituitary, Parathyroid and Osteoblast

G.  N.  Hendy1 , H.  Kaji2 , H.  Sowa2 , J.-J.  Lebrun1 , L.  Canaff1
  • 1Departments of Medicine, Physiology and Human Genetics, McGill University, and Calcium Research Laboratory and Hormones and Cancer Research Unit, Royal Victoria Hospital, Montreal, Quebec, Canada
  • 2Division of Endocrinology/Metabolism, Neurology and Haematology/Oncology, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
Further Information

Publication History

Received 10 January 2005

Accepted after revision 25 March 2005

Publication Date:
07 July 2005 (online)

Abstract

Pituitary: Menin is a Smad3-interacting protein; inactivation of menin blocks transforming growth factor (TGF)-β and activin signaling, antagonizing their growth-inhibitory properties in anterior pituitary cells. Menin is also required for the activin-induced inhibition of prolactin expression mediated by the Smads and the transcription factor, Pit-1. The interaction between menin and Smad3 is direct. Parathyroid: In cultured parathyroid cells from uremic hemodialysis patients, in which the menin signaling pathways are probably still intact, menin inactivation achieved by menin antisense oligonucleotides leads to loss of TGF-β inhibition of parathyroid cell proliferation and parathyroid hormone (PTH) secretion. Moreover, TGF-β does not affect the proliferation and PTH production of parathyroid cells from multiple endocrine neoplasia type 1 (MEN1) patients. Osteoblast: Men1-null mouse fetuses that die at day 12 or earlier have cranial/facial hypoplasias implicating menin in bone development. Menin is required for the commitment of multipotential mesenchymal stem cells into the osteoblast lineage. This is achieved by menin interacting physically and functionally with bone morphogenetic protein (BMP)-2 regulated Smads, such as Smad1 and Smad5, and the key osteoblast regulator, Runx2. These interactions are lost as the committed osteoblasts differentiate further at which time menin interacts with Smad3, mediating the negative regulation of Runx2 by TGF-β. Menin also suppresses osteoblast maturation, partly by inhibiting the differentiation actions of JunD.

References

  • 1 Chandrasekharappa S C, Guru S C, Manickam P, Olufemi S E, Collins F S, Emmert-Buck M R, Debelenko L V, Zhuang Z, Lubensky I A, Liotta L A, Crabtree J S, Wang Y, Roe B A, Weisemann J, Boguski M S, Agarwal S K, Kester M B, Kim Y S, Heppner C, Dong Q, Spiegel A M, Burns A L, Marx S J. Positional cloning of the gene for multiple endocrine neoplasia type 1. Science (Wash.  DC). 1997;  276 404-407
  • 2 Guru S C, Goldsmith P K, Burns A L, Marx S J, Spiegel A M, Collins F S, Chandrasekharappa S C. Menin, the product of the MEN1 gene, is a nuclear protein.  Proc Natl Acad Sci USA. 1998;  95 1630-1634
  • 3 Kaji H, Canaff L, Goltzman D, Hendy G N. Cell cycle regulation of menin expression.  Cancer Res. 1999;  59 5097-5101
  • 4 The European Consortium on MEN1 . Identification of the multiple endocrine neoplasia type 1 (MEN1) gene.  Hum Mol Genet. 1997;  6 1177-1183
  • 5 Crabtree J S, Scachetti P C, Ward J M, Garrett-Beal L, Emmert-Buck M R, Edgemon K A, Lorang D, Libutti S K, Chandrasekharappa S C, Marx S J, Spiegel A M, Collins F S. A mouse model of multiple endocrine neoplasia type 1 develops multiple endocrine tumors.  Proc Natl Acad Sci USA. 2001;  98 1118-1123
  • 6 Bertolino P, Tong W M, Galendo D, Wang Z Q, Zhang C X. Heterozygous Men1 mutant mice develop a range of endocrine tumors mimicking multiple endocrine neoplasia type 1.  Mol Endocrinol. 2003;  17 1880-1892
  • 7 Bertolino P, Radovanovic I, Casse H, Aguzzi A, Wang Z Q, Zhang C X. Genetic ablation of the tumor suppressor menin causes lethality at mid-gestation with defects in multiple organs.  Mech Dev. 2003;  120 549-560
  • 8 Hughes C M, Rozenblatt-Rosen O, Milne T A, Copeland T D, Levine S S, Lee J C, Hayes D N, Shanmugan K S, Bhattachariee A, Biondi C A, Kay G F, Hayward N K, Hess J L, Meyerson M. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus.  Mol Cell. 2004;  13 587-597
  • 9 Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero D J, Kitabayushi I, Herr W, Cleary M L. Leukemia proto-oncogene MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression.  Mol Cell Biol. 2004;  24 5639-5649
  • 10 Suphapeetiporn K, Greally J M, Walpita D, Ashley T, Bale A E. MEN1 tumor-suppressor protein localizes to telomeres during meiosis.  Gene Chromosome Cancer. 2002;  35 81-85
  • 11 Lin S Y, Elledge S J. Multiple tumor suppressor pathways negatively regulate telomerase.  Cell. 2003;  113 881-889
  • 12 Sukhodolets K E, Hickman A B, Agarwal S K, Sukhodolets M V, Obungu V H, Novotny E A, Crabtree J S, Chandrasekharappa S C, Collins F S, Spiegel A M, Burns A L, Marx S J. The 32-kilodalton subunit of replication protein A interacts with menin, the product of the MEN1 tumor suppressor gene.  Mol Cell Biol. 2003;  23 493-509
  • 13 Jin S, Mao H, Schnepp R W, Sykes S M, Silva A C, D’Andrea A D, Hua X. Menin associates with FANCD2, a protein involved in repair of DNA damage.  Cancer Res. 2003;  63 4204-4210
  • 14 Poisson A, Zablewska B, Gaudray P. Menin interacting proteins as clues toward the understanding of multiple endocrine neoplasia type 1.  Cancer Lett. 2003;  189 1-10
  • 15 Dockray G J. Keeping neuroendocrine cells in check: roles for TGFβ, Smads, and menin?.  Gut. 2003;  52 1237-1239
  • 16 Shi Y, Massaque J. Mechanisms of TGF-β signaling from cell membrane to the nucleus.  Cell. 2003;  113 685-700
  • 17 ten Dijke P, Miyazono K, Heldin C H. Signaling inputs converge on nuclear effectors in TGF-β signaling.  Trends biochem Sci. 2000;  25 64-70
  • 18 Markowitz S, Wag J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan R S, Zborowska E, Kinzler K W, Vogelstein B. et al . Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability.  Science. 1995;  268 1336-1338
  • 19 Goggins M, Shekher M, Turnacioglu K, Yeo C J, Hruban R H, Kern S E. Genetic alterations of the transforming growth factor beta receptor genes in pancreatic and biliary adenocarcinomas.  Cancer Res. 1998;  58 5329-5332
  • 20 Chen T, de Vries E GE, Hollema H, Yegen H A, Vellucci V F, Strickler H D, Hildesheim A, Reiss M. Structural alterations of transforming growth factor-beta receptor genes in human cervical carcinoma.  Int J Cancer. 1999;  82 43-51
  • 21 Pasche B, Kolachana P, Nafa K, Satagopan J, Chen Y G, Lo R S, Brener D, Yang D, Kirstein L, Oddoux C, Ostrer H, Vineis P, Varesco L, Jhanwar S, Luzzatto L, Massague J, Offit K. TbetaR-I(6A) is a candidate tumor susceptibility allele.  Cancer Res. 1999;  59 5678-5682
  • 22 Chen T, Carter D, Garrigue-Antar l, Reiss M. Transforming growth factor beta type I receptor kinase mutant associated with metastatic breast cancer.  Cancer Res. 1998;  58 4805-4810
  • 23 Hahn S A, Schutte M, Hoque A T, Moskaluk C a, da Costa L T, Rozenblum E, Weinstein C L, Fischer A, Yeo C J, Hruban R H, Kern S E. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1.  Science. 1996;  271 350-353
  • 24 Barrett M T, Schutte M, Kern S E, Reid B J. Allelic loss and mutational analysis of the DPC4 gene in esophageal adenocarcinoma.  Cancer Res. 1996;  56 4351-4353
  • 25 Kim S K, Fan Y, Papadimitrakopoulou V, Clayman G, Hittelman W N, Hong W K, Lotan R, Mao L. DPC4, a candidate tumor suppressor gene, is altered infrequently in head and neck squamous cell carcinoma.  Cancer Res. 1996;  56 2519-2521
  • 26 Kawate S, Takenoshita S, Ohwada S, Mogi A, Fukusato T, Makita F, Kuwano H, Morishita Y. Mutation analysis of transforming growth factor beta type II receptor, Smad2, and Smad4 in hepatocellular carcinoma.  Int J Oncol. 1999;  14 127-131
  • 27 Kong X T, Choi S H, Inoue A, Xu F, Chen T, Takita J, Yokota J, Bessho F, Yanagisawa M, Hanada R, Yamamoto K, Hayashi Y. Expression and mutational analysis of the DCC, DPC4, and MADR2/JV18 - 1 genes in neuroblastoma.  Cancer Res. 1997;  57 3772-3778
  • 28 Yokota T, Matsumoto S, Yoshimoto M, Kasumi F, Akiyama F, Sakamoto G, Nakamura Y, Emi M. Mapping of a breast cancer tumor suppressor gene locus to a 4-cM interval on chromosome 18q21.  Jpn J Cancer Res. 1997;  88 959-964
  • 29 Nagatake M, Takagi Y, Osada H, Uchida K, Mitsudomi T, Saji S, Shimokata K, Takahashi T, Takahashi T. Somatic in vivo alterations of the DPC4 gene at 18q21 in human lung cancers.  Cancer Res. 1996;  56 2718-2720
  • 30 Eppert K, Scherer S W, Ozcelik H, Pirone R, Hoodless P, Kim H, Tsui L C, Bapat B, Gallinger S, Andrulis I L, Thomsen G H, Wrana J L, Attisano L. MADR1 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma.  Cell. 1996;  86 543-552
  • 31 Takagi Y, Koumura H, Futamura M, Aoki S, Yamaguchi K, Kida H, Tanemura H, Shimokawa K, Saji S. Somatic alterations of the SMAD-2 gene in human colorectal cancers.  Br J Cancer. 1998;  78 1152-1155
  • 32 Riggins G J, Thiagalingam S, Rozenblum E, Weinstein C L, Kern S E, Hamilton S R, Willson J K, Markowitz S D, Kinzler K W, Vogelstein B. Mad-related genes in the human.  Nat Genet. 1996;  13 347-349
  • 33 Kaji H, Canaff L, Lebrun J-J, Goltzman D, Hendy G N. Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type β signaling.  Proc Natl Acad Sci USA. 2001;  98 3837-3842
  • 34 Canaff L, Hendy G N. Menin interacts directly with the TGF-β signaling molecule Smad3 and MEN1 missense mutations within the interacting region have impaired TGF-β transcriptional activity.  J Int Med. 2004;  255 721-722, Abs 7004
  • 35 Stroschein S L, Wang W, Zhou S, Zhou Q, Luo K. Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein.  Science. 1999;  286 771-774
  • 36 Luo K, Stroschein S L, Wang W, Chen D, Martens E, Zhou S, Zhou Q. The Ski oncoprotein interacts with the Smad proteins to repress TGF-β signaling.  Genes Dev. 1999;  13 2196-2206
  • 37 Theodoropoulou M, Cavallari I, Barzon L, D’Agostino D M, Ferro T, Arzberger T, Grubler Y, Schaaf L, Losa M, Fallo F, Ciminale V, Stalla G K, Pagotto U. Differential expression of menin in sporadic pituitary adenomas.  Endocrine-Related Cancer. 2004;  11 333-344
  • 38 Murata T, Ying S. Transforming growth factor-β and activin inhibit basal secretion of prolactin in a pituitary monolayer culture system.  Proc Soc Exp Biol Med. 1991;  198 599-605
  • 39 Lacerte A, Lee E-H, Reynaud R, Canaff L, De Guise C, Devost D, Ali S, Hendy G N, Lebrun J-J. Activin inhibits prolactin expression and cell growth through Smads, Pit-1 and Menin.  Molec Endocrinol. 2004;  18 1558-1569
  • 40 Sowa H, Kaji H, Kitazawa R, Kitazawa S, Tsukamoto T, Yano S, Tsukada T, Canaff L, Hendy G N, Sugimoto T, Chihara K. Menin inactivation leads to loss to transforming growth factor β inhibition of parathyroid cell proliferation and parathyroid hormone secretion.  Cancer Res. 2004;  64 2223-2228
  • 41 Shattuck T M, Costa J, Bernstein M, Jensen R T, Chung D C, Arnold A. Mutational analysis of Smad3, a candidate tumor suppressor implicated in TGF-β and menin pathways, in parathyroid adenomas and enteropancreatic endocrine tumors.  J Clin Endocrineol Metab. 2002;  87 3911-3914
  • 42 Yanagisawa , J , Yanagi Y, Masuhiro Y, Suzawa M, Wantanabe M, Kashiwagi K, Toriyabe T, Kawabata M, Miyazone K, Kato S. Convergence of transforming growth factor β and vitamin D signaling pathways on Smad transcriptional coactivators.  Science. 1999;  283 1317-1321
  • 43 Subramaniam N, Leong G M, Cock T A, Flanagan J L, Fong C, Eisman J A, Kouzmenko A P. Cross-talk between 1,25-dihydroxyvitamin D3 and transforming growth factor-β signaling requires binding of VDR and Smad3 proteins to their cognate DNA recognition elements.  J Biol Chem. 2001;  276 15 741-15 746
  • 44 Kremer R, Bolivar I, Goltzman D, Hendy G N. Influence of calcium and 1,25-dihydroxycholecalciferol on proliferation and proto-oncogene expression in primary cultures of bovine parathyroid cells.  Endocrinology. 1989;  125 935-941
  • 45 Otto W R, Rao J. Tomorrow’s skeleton staff: mesenchymal stem cells and the repair of bone and cartilage.  Cell Prolif. 2004;  37 97-110
  • 46 Sowa H, Kaji H, Canaff L, Hendy G N, Tsukamoto T, Yamaguchi T, Miyazono K, Sugimoto T, Chihara K. Inactivation of menin, the product of the multiple endocrine neoplasia type 1 gene, inhibits the commitment of multipotential mesenchymal stem cells into the osteoblast lineage.  J Biol Chem. 2003;  278 21 058-21 069
  • 47 Sowa H, Kaji H, Hendy G N, Canaff L, Komori T, Sugimoto T, Chihara K. Menin is required for bone morphogenetic protein 2- and transforming growth factor β-regulated osteoblastic differentiation through interaction with Smads and Runx2.  J Biol Chem. 2004;  279 40 267-40 275
  • 48 Naito J, Kaji H, Sowa H, Hendy G N, Sugimoto T, Chihara K. Menin suppresses osteoblast differentiation by antagonizing the AP-1 factor, JunD.  J Biol Chem. 2005;  280 4785-4791
  • 49 Novotny E A, Prasad N, Crabtree J, Ji Y-M, Elkahloun A, Agarwal S, Lumelsky N, Marx S, Spiegel A, Collins F, Chandrasekharappa S. Characterization of murine Men1-/- cell lines established to study the function of menin. Eighth International Workshop on Multiple Endocrine Neoplasia. Van Andel Institute Grand Rapids, Michigan, USA; June 15 - 18, 2002: Abs. 24

G. N. Hendy, Ph. D.

Calcium Research Laboratory, Royal Victoria Hospital

Rm. H4.67 · 687 Pine Avenue West · Montreal · QC H3A 1A1 · Canada

Phone: +1 (514) 843-1632

Fax: +1 (514) 843-1712

Email: geoffrey.hendy@mcgill.ca

    >