Planta Med 2005; 71(9): 814-818
DOI: 10.1055/s-2005-871247
Original Paper
Pharmacology
© Georg Thieme Verlag KG Stuttgart · New York

An Acidic Arabinogalactan-Protein from the Roots of Baptisia tinctoria

Maren Wack1 , Birgit Classen1 , Wolfgang Blaschek1
  • 1Institute of Pharmacy, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
Further Information

Publication History

Received: November 11, 2004

Accepted: April 6, 2005

Publication Date:
19 August 2005 (online)

Abstract

An acidic arabinogalactan-protein (AGP) isolated from an aqueous extract of the roots of wild indigo [Baptisia tinctoria (L.) R. Br.] by precipitation with β-glucosyl Yariv reagent consists of L-arabinose (34.0 %) and D-galactose (58.7 %) (1 : 1.7), minor amounts of D-glucuronic acid (4.0 %) and traces of D-rhamnose (2.3 %) and D-glucose (<1 %). The protein part of the AGP mainly contains asparagine/aspartic acid (11.3 %), glutamine/glutamic acid (10.8 %), alanine (8.0 %), serine (8.0 %), leucine (7.0 %) and hydroxyproline (6.3 %). Methylation analysis revealed that the carbohydrate moiety of the glycoprotein has a highly branched structure. The core consists of 3-linked β-D-galactopyranose units carrying side chains of 6-linked β-D-galactopyranose in position C(O)6, partly substituted in position C(O)3 by side chains of 5- and 3-linked α-L-arabinofuranosyl residues and 4-linked β-D-galactopyranose units. Galactose and arabinose as well as glucose, rhamnose and glucuronic acid occur in terminal positions. The presence of these glycosyl linkage types was confirmed by 13C-NMR data. The AGP was separated into two fractions by SEC. The major peak corresponded to a hydrodynamic volume of 5.6 × 104 Da (AGP-F2) and the minor peak to a hydrodynamic volume of 1.2 × 106 Da (AGP-F1). MALLS revealed apparent weight average molecular masses of 1.4 × 105 Da and >1.0 × 107 Da, respectively. Both fractions show corresponding carbohydrate compositions and structural features with regard to the carbohydrate moiety. Mild acid hydrolysis of the AGP leads to loss of terminal arabinofuranosyl units. The residual galactan backbone does not react with the Yariv reagent in gel diffusion tests while the total AGP still interferes with the reagent following reduction of terminal glucuronic acid residues.

References

  • 1 Beuscher N, Kopanski L. Stimulation der Immunantwort durch Inhaltsstoffe aus Baptisia tinctoria .  Planta Med. 1985;  51 381-4
  • 2 Beuscher N, Scheit K H, Bodinet C, Kopanski L. Immunologisch aktive Glykoproteine aus Baptisia tinctoria .  Planta Med. 1989;  55 358-63
  • 3 Luettig B, Steinmüller C, Gifford G E, Wagner H, Lohmann-Matthes M L. Macrophage activation by the polysaccharide arabinogalactan isolated from plant cell cultures of Echinacea purpurea .  J Nat Canc Inst. 1989;  81 669-75
  • 4 Burger R A, Torres A R, Warren R P, Caldwell V D, Hughes B G. Echinacea-induced cytokine production by human macrophages.  Int J Immunopharmac. 1997;  19 371-9
  • 5 Mühlau A. Isolierung und Charakterisierung von immunologisch aktiven Glycoproteinen aus Baptisia tinctoria (Wilder Indigo). Dissertation Marburg/Lahn; 2000
  • 6 Clarke A E, Anderson R L, Stone B A. Form and function of arabinogalactans and arabinogalactan-proteins.  Phytochemistry. 1979;  18 521-40
  • 7 Aspinall G O. In: Biogenesis of Plant Cell Wall Polysaccharides. Loewus F, editor New York; Academic Press 1973: p 95
  • 8 Bacic A, Churms S C, Stephen A M, Cohen P B, Fincher G B. Fine structure of the arabinogalactan-protein from Lolium multiflorum .  Carbohydr Res. 1987;  162 85-93
  • 9 Fincher G B, Stone B A, Clarke A E. Arabinogalactan-proteins: structure, biosynthesis und function.  Ann Rev Plant Physiol. 1983;  34 47-70
  • 10 Clarke A E, Gleeson P A, Jermyn M A, Knox R B. Characterization and localization of β-lectins in lower and higher plants.  Aust J Plant Physiol. 1978;  5 707-22
  • 11 Yariv J, Rapport M M, Graf L. The interaction of glycosides and saccharides with antibody to the corresponding phenylazo glycosides.  Biochem J. 1962;  85 383-8
  • 12 Taylor R L, Conrad H E. Stoichiometric depolymerisation of polyuronide and glycosamino-glycuronans to monosaccharides following reduction of their carbodiimide-activated carboxyl groups.  Biochemistry. 1972;  11 1383-8
  • 13 Blakeney A B, Harris P J, Henry R J, Stone B A. A simple and rapid preparation of alditol acetates for monosaccharide analysis.  Carbohydr Res. 1983;  113 291-9
  • 14 Classen B, Witthohn K, Blaschek W. Characterization of an arabinogalactan-protein isolated from pressed juice of Echinacea purpurea by precipitation with the β-glucosyl Yariv reagent.  Carbohydr Res. 2000;  327 497-504
  • 15 Harris P J, Henry R J, Blakeney A B, Stone B A. An improved procedure for the methylation analysis of oligosaccharides and polysaccharides.  Carbohydr Res. 1984;  127 59-73
  • 16 Jermyn M A, Yeow Y M. A class of lectins present in the tissues of seed plants.  Aust J Plant Physiol. 1975;  2 501-31
  • 17 Gane A M, Craik D, Munro S LA, Howlett G J, Clarke A E, Bacic A. Structural analysis of the carbohydrate moiety of arabinogalactan-proteins from stigmas and styles of Nicotiana alata .  Carbohydr Res. 1995;  277 67-85
  • 18 Tan L, Qiu F, Lamport D TA, Kieliszewski M. Structure of a hydroxyproline (Hyp)-arabinogalactan polysaccharide from repetitive Ala-Hyp expressed in transgenic Nicotiana tabacum .  J Biol Chem. 2004;  279 13 156-65
  • 19 Prescott J H, Enriquez P, Jung C, Menz E, Groman E V. Larch arabinogalactan for hepatic drug delivery: isolation and characterization of a 9 kDa arabinogalactan fragment.  Carbohydr Res. 1995;  278 113-28
  • 20 Pope D G. Relationships between hydroxyproline-containing proteins secreted into the cell wall and medium of suspension-cultured Acer pseudoplatanus cells.  Plant Physiol. 1977;  59 894-900
  • 21 Qi W, Fong C, Lamport D TA. Gum arabic glycoprotein is a twisted hairy rope.  Plant Physiol. 1991;  96 848-55

Dr. Maren Wack

Institute of Pharmacy

Department of Pharmaceutical Biology

Christian-Albrechts-University of Kiel

Gutenbergstrasse 76

24118 Kiel

Germany

Phone: +49-431-880-1112

Fax: +49-431-880-1102

Email: mwack@pharmazie.uni-kiel.de

>