Int J Sports Med 2006; 27(10): 810-817
DOI: 10.1055/s-2005-872965
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Maximal Accumulated Oxygen Deficit and Blood Responses of Ammonia, Lactate and pH after Anaerobic Test: a Comparison between International and National Elite Karate Athletes

G. Ravier1 , B. Dugué1 , 2 , F. Grappe1 , J.-D. Rouillon1
  • 1Unité de formation et de recherche en sciences et techniques des activités physiques et sportives, Laboratoire des Sciences du Sport, Place Saint-Jacques, Besançon cedex, France
  • 2Laboratory of Exercise-Induced Physiological Adapatations (EA 3813), University of Poitiers, Poitiers, France
Further Information

Publication History

Accepted after revision: September 20, 2005

Publication Date:
01 February 2006 (online)

Abstract

The purpose of this study was to compare maximal accumulated oxygen deficit (MAOD) and the time course of blood markers of the anaerobic metabolism in response to exhaustive supramaximal test in two elite (international vs. national) class karate athletes. Ten male international competitors from the French national team (Int, age 21.2 ± 3.1 years, 71.9 ± 11.4 kg) and eight national class (Nat, 23.7 ± 2.4 years, 70.7 ± 12.2 kg) athletes with a similar maximal oxygen uptake of 57.6 and 59.4 ml · kg-1 · min-1, respectively, were involved in this study. The MAOD was determined after an exhaustive supramaximal exercise (2 - 3 min at 140 % of their V·O2max velocity) on a treadmill ergometer. Blood lactate, pH and plasma ammonia were determined at rest, immediately at the end of exercise and during the recovery period at 2, 4, 6, 8, 10 and 15 min. After the supramaximal exercise, a dramatic higher increase in the blood concentration of ammonia until its peak was observed in the Nat compared with the Int. Time course of [NH4 +] and [La] reveals significant (p < 0.01) differences between the two groups. Peak values for [H+] (89.2 ± 6.7 vs. 75.9 ± 8.8 nmol · l-1; p < 0.01), [NH4 +] (180 ± 67.9 vs. 118.7 ± 22.7 µmol · l-1; p < 0.05) and [La] (20.7 ± 2.7 vs. 17.9 ± 1.1 mmol · l-1; p < 0.05) were higher in Nat compared with Int group, respectively. However, the MAOD was similar in both groups (67.8 ± 8 ml · kg-1 and 64.5 ± 6.4 for Int and Nat groups, respectively). These data suggest that ammonia and lactate accumulation are sensitive to the level of performance in karate. Higher concentrations of these metabolites in blood after supramaximal exhaustive exercise may be related to either higher anaerobic contribution to energy supply in Nat or higher removal ability in the Int group.

References

  • 1 Angulo J, Terreros J L, Aragones M T, Sanchez E, Lopez C, Arnaudas C. Karate: cargas de lactatemia en entramiento y en competicion.  Apunts Medicina de L'esport. 1990;  27 275-281
  • 2 Bangsbo J. Quantification of anaerobic energy production during intense exercise.  Med Sci Sports Exerc. 1998;  30 47-52
  • 3 Banister E W, Cameron B J. Exercise-induced hyperammonemia: peripheral and central effects.  Int J Sports Med. 1990;  11 S129-S142
  • 4 Beneke R, Beyer T, Jachner C, Erasmus J, Hutler M. Energetics of karate kumite.  Eur J Appl Physiol. 2004;  92 518-523
  • 5 Borg G. Perceived exertion as an indicator of somatic stress.  Scand J Rehabil Med. 1970;  2 (Suppl 2) 92-98
  • 6 Cheetham M E, Boobis L H, Brooks S, Williams C. Human muscle metabolism during sprint running.  J Appl Physiol. 1986;  61 54-60
  • 7 Davis J M, Bailey S P. Possible mechanisms of central nervous system fatigue during exercise.  Med Sci Sports Exerc. 1997;  29 45-57
  • 8 Dawson B, Fitzsimons M, Green S, Goodman C, Carey M, Cole K. Changes in performance, muscle metabolites, enzymes and fibre types after short sprint training.  Eur J Appl Physiol. 1998;  78 163-169
  • 9 Dudley G A, Terjung R L. Influence of aerobic metabolism on IMP accumulation in fast-twitch muscle.  Amer J Physiol. 1985;  248 C37-C42
  • 10 Esbjörnsson-Liljedahl M, Jansson E. Sex difference in plasma ammonia but not in muscle inosine monophosphate accumulation following sprint exercise in humans.  Eur J Appl Physiol. 1999;  79 404-408
  • 11 Gastin P B, Lawson D L. Influence of training status on maximal accumulated oxygen deficit during all-out cycle exercise.  Eur J Appl Physiol. 1994;  69 321-330
  • 12 Gastin P B, Costill D L, Lawson D L, Krzeminski K, McConel G K. Accumulated oxygen deficit during supramaximal all out and constant intensity exercise.  Med Sci Sports Exerc. 1995;  27 255-263
  • 13 Graham T E, Turcotte L P, Kiens B, Richter E A. Effect of endurance training on ammonia and amino acid metabolism in humans.  Med Sci Sports Exerc. 1997;  29 646-653
  • 14 Green S. Maximal oxygen deficit of sprint and middle distance runners.  Eur J Appl Physiol. 1995;  70 192-193
  • 15 Greenhaff P L, Soderlund K, Ren J M, Hultman E. Energy metabolism in single human muscle fibres during intermittent contraction with occluded circulation.  J Physiol. 1993;  460 443-453
  • 16 Hellsten-Westing Y, Balsom P D, Norman B, Sjodin B. The effect of high intensity training on purine metabolism in man.  Acta Physiol Scand. 1993;  149 405-412
  • 17 Imamura H, Yoshimura Y, Nishimura S, Nakazawa A T, Nishimura C, Shirota T. Oxygen uptake, heart rate and blood lactate responses during and following karate training.  Med Sci Sports Exerc. 1999;  2 342-347
  • 18 Jacobs I, Esbjörnsson M, Sylven C, Holm I, Jansson E. Sprint training effects on muscle myoglobin, enzymes fiber types and blood lactate.  Med Sci Sports Exerc. 1987;  19 368-374
  • 19 Jansson E, Dudley G A, Norman B, Tesch A P. ATP and IMP in single human muscle fibres after high intensity exercise.  Clin Physiol. 1987;  7 337-345
  • 20 Jensen-Urstad M, Ahlborg G, Jacobs I. High lactate and NH3 release during arm vs. leg exercise is not due to β-adrenoceptor stimulation.  J Appl Physiol. 1993;  74 2860-2867
  • 21 Kato T, Matsumura Y, Tsukanaka A, Harada T, Kosaka M, Matsui N. Effect of low oxygen inhalation on changes in blood pH, lactate, and ammonia due to exercise.  Eur J Appl Physiol. 2004;  91 296-302
  • 22 Katz A, Broberg S, Sahlin K, Wahren J. Muslce ammoniac and amino acid metabolism during dynamic exercise in man.  Clin Physiol. 1986;  6 365-379
  • 23 Linossier M T, Denis C, Dormois D, Geyssant A, Lacour J R. Ergometric and metabolic adaptation to a 5-s sprint training programme.  Eur J Appl Physiol. 1993;  67 408-414
  • 24 MacRae H SH, Noakes T D, Dennis S C. Effects of endurance training on lactate removal by oxidation and gluconeogenesis during exercise.  Eur J Physiol. 1995;  430 964-970
  • 25 Medbø J I, Mohn A C, Tabata I, Bahr R, Vaage O, Sejersted O M. Anaerobic capacity determined by maximal accumulated O2 deficit.  J Appl Physiol. 1988;  64 50-60
  • 26 Medbø J I, Tabata I. Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise.  J Appl Physiol. 1989;  67 1881-1886
  • 27 Medbø J I, Burgers S. Effects of training on the anaerobic capacity.  Med Sci Sports Exerc. 1990;  4 501-507
  • 28 Naughton G A, Carlson J S, Buttifant D C, Selig S E, Meldrum K, McKenna M J, Snow R J. Accumulated oxygen deficit measurements during and after high-intensity exercise in trained male and female adolescents.  Eur J Appl Physiol. 1997;  76 525-531
  • 29 Olesen H L. Accumulated oxygen deficit increases with inclination of uphill running.  J Appl Physiol. 1992;  73 1130-1134
  • 30 Olesen H L, Raabo E, Bangsbo J. Maximal oxygen deficit of sprint and middle distance runners.  Eur J Appl Physiol. 1994;  69 140-146
  • 31 Ravier G, Grappe F, Rouillon J D. Application of force-velocity cycle ergometer test and vertical jump tests in the functinal assessment of karate competitor.  J Sports Med Phys Fitness. 2004;  44 349-355
  • 32 Sahlin K, Tonkonogi, Söderlund K. Energy supply and muscle fatigue in humans.  Acta Physiol Scand. 1998;  162 261-266
  • 33 Snow R J, McKenna M J, Carrey M F, Hargreaves M. Sprint training attenuates plasma ammonia accumulation following maximal exercise.  Acta Physiol Scand. 1992;  144 395-396
  • 34 Spriet L L, Derlund K, Bergström M, Hultman E. Anaerobic energy release in skeletal muscle during electrical stimulation in men.  J Appl Physiol. 1987;  62 611-616
  • 35 Strobel G, Friedmann B, Siebold R, Bärtsch P. Effect of severe exercise on plasma catecholamine in differently trained athletes.  Med Sci Sports Exerc. 1999;  3 560-565
  • 36 Sutton R J, Jones N L, Toews C J. Effect of pH on muscle glycolysis during exercise.  Clin Sci. 1981;  61 331-338
  • 37 Tabata I, Nishimura K, Kouzaki M, Hirai Y, Ogita F, Miyachi M, Yamamoto H. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and V·O2max.  Med Sci Sports Exerc. 1996;  28 1327-1330
  • 38 Walsh N P, Blannin A K, Clark A M, Cook L, Robson P J, Gleeson M. The effects of high-intensity intermittent exercise on the plasma concentrations of glutamine and organic acids.  Eur J Appl Physiol. 1998;  77 434-438
  • 39 Yuan Y, So R, Wong S, Chan K M. Ammonia threshold-comparison to lactate threshold, correlation to other physiological parameters and response to training.  Scand J Med Sci Sports. 2002;  12 358-364

Ph.D. Gilles Ravier

Université de Franche Comté
Laboratoire des Sciences du Sport

Place Saint-Jacques

25030 Besançon

France

Fax: + 33 3 81 66 63 52

Email: gilles.ravier@univ-fcomte.fr

    >