Radiologie up2date 2005; 5(4): 317-332
DOI: 10.1055/s-2005-921078
Gerätetechniken/Neuentwicklungen
© Georg Thieme Verlag KG Stuttgart · New York

Funktionelle Magnetresonanztomographie: Grundlagen und klinische Anwendung

Magnetic Resonance Imaging: Basics and Clinical ApplicationC.  Stippich1
  • 1 Abteilung Neuroradiologie, Neurologische Klinik, Universitätsklinikum Heidelberg
Further Information

Publication History

Publication Date:
16 December 2005 (online)

Zusammenfassung

Die funktionelle Magnetresonanztomographie (fMRT) ist ein viel versprechendes neues diagnostisches Bildgebungsverfahren zur nichtinvasiven Messung und Visualisierung spezifischer Funktionen des menschlichen Gehirns. Wegen der noch fehlenden medizinischen Zulassung muss die fMRT klinisch im Rahmen wissenschaftlicher Studien durchgeführt werden. Wird die fMRT standardisiert durchgeführt, ist die Erstellung „klinisch-funktioneller Befunde” für individuelle Patienten grundsätzlich möglich. Um interessierten Anwendern den Zugang zur klinisch-wissenschaftlichen fMRT-Diagnostik zu erleichtern, werden in dieser Arbeit wichtige neurophysiologische und technisch-methodische Grundlagen der BOLD-fMRT zusammengefasst, praktische Aspekte der klinischen fMRT erläutert, optimierte und klinisch erprobte Untersuchungsprotokolle vorgeschlagen und die am besten etablierte und validierte klinische fMRT-Anwendung vorgestellt, nämlich die prächirurgische fMRT-Diagnostik bei Patienten mit Hirntumoren.

Abstract

Functional magnetic resonance imaging (fMRI) is a promising new diagnostic MR imaging procedure that enables us to measure and to visualize specific functions of the human brain non-invasively. Until fMRI has gained medical approval, clinical studies need to be performed during scientific trials. However, standardized fMRI is capable of providing clinical „functional diagnoses” in individual patients. To facilitate the approach to clinical fMRI, this paper summarizes important neurophysiological, technical and methodological basics, refers to practical aspects, provides optimized and clinically established fMRI protocols and highlights the most common and best validated clinical application, namely presurgical fMRI in patients with brain tumors.

Literatur

  • 1 Belliveau J W, Kennedy D N Jr, McKinstry R C, Buchbinder B R, Weisskoff R M, Cohen M S, Vevea J M, Brady T J, Rosen B R. Functional mapping of the human visual cortex by magnetic resonance imaging.  Science. 1991;  254 716-719
  • 2 Menon R S, Ogawa S, Hu X, Strupp J P, Anderson P, Ugurbil K. BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: echo-planar imaging correlates with previous optical imaging using intrinsic signals.  Magn Reson Med. 1995;  33 453-459
  • 3 Frahm J, Merboldt K D, Hanicke W, Kleinschmidt A, Boecker H. Brain or vein - oxygenation or flow? On signal physiology in functional MRI of human brain activation.  NMR Biomed. 1994;  7 45-53
  • 4 Ogawa S, Lee T M, Kay A R, Tank D W. Brain magnetic resonance imaging with contrast dependent blood oxygenation.  PNAS USA. 1990;  87 9868-9872
  • 5 Logothetis N K, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal.  Nature. 2001;  412 150-157
  • 6 Detre J A, Leigh J S, Williams D S, Koretsky A P. Perfusion imaging.  Magn Reson Med. 1992;  23 37-45
  • 7 Stippich C, Heiland S, Tronnier V, Mohr A, Sartor K. Functional magnetic resonance imaging: Physiological background, technical aspects and prerequesites for clinical use.  Fortschr Röntgenstr. 2002;  174 43-49
  • 8 Fox P T, Raichle M E. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects.  PNAS USA. 1986;  83 1140-1144
  • 9 Turner R, LeBihan D, Moonen C T, Despres D, Frank J. Echo-planar time course MRI of cat brain oxygen changes.  Magn Reson Med. 1991;  22 159-166
  • 10 Hulvershorn J, Bloy L, Gualtieri E E, Leigh J S, Elliott M A. Spatial sensitivity and temporal response of spin echo and gradient echo bold contrast at 3 T using peak hemodynamic actication time.  Neuroimage. 2005;  24 216-223
  • 11 Zambreanu L, Wise R G, Brooks J C, Iannetti G D, Tracey I. A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging.  Pain. 2005;  114 397-407
  • 12 Kwong K K, Belliveau J W, Chesler D A, Goldberg I E, Weisskoff R M, Poncelet B P, Kennedy D N, Hoppel B E, Cohen M S, Turner R, Cheng H M, Brady T J, Rosen B R. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation.  PNAS USA. 1992;  89 5675-5679
  • 13 Buckner R L, Bandettini P A, O’Craven K M, Savoy R L, Petersen S E, Raichle M E, Rosen B R. Detection of cortical activation during averaged singke trials of cognitive task using functional magnetic resonance imaging.  PNAS USA. 1996;  93 14 878-14 883
  • 14 Gold S, Christian B, Arndt S, Zeien G, Cizadlo T, Johnson D L, Flaum M, Andreasen N C. Functional MRI statistical software packages: a comparative analysis.  Hum Brain Mapp.. 1998;  6 73-84
  • 15 Roberts T P, Crawley A. Functional magnetic resonance imaging (fMRI) processing and analysis.  ASNR Electronic Learning Center Syllabus. 2003;  1-23
  • 16 Fernández G, de Greiff A, v Oertzen J, Reuber M, Lun S, Klaver P, Ruhlmann J, Reul J, Elger C E. Language mapping in less than 15 minutes: real-time functional MRI during routine clinical investigation.  Neuroimage. 2001;  14 585-594
  • 17 Stippich C, Hofmann R, Kapfer D, Hempel E, Heiland S, Jansen O, Sartor K. Somatotopic mapping of the human primary somatosensory cortex by fully automated tactile stimulation using functional MRI.  Neuroscience Letters. 1999;  277 25-28
  • 18 Stippich C, Kapfer D, Hempel E, Heiland S, Sartor K. Robust localization of the contralateral precentral gyrus in hemiparetic patients using the unimpaired ipsilateral hand: a clinical functional magnetic resonance imaging protocol.  Neuroscience Letters. 2000;  285 155-159
  • 19 Stippich C, Ochmann H, Sartor K. Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging (fMRI).  Neuroscience Letters. 2002;  331 50-54
  • 20 Stippich C, Mohammed J, Kress B, Hähnel S, Günther J, Konrad F, Sartor K. Robust localization and lateralization of human language function: An optimized clinical functional magnetic resonance imaging protocol.  Neuroscience Letters. 2003;  346 109-113
  • 21 Stippich C, Romanowski A, Nennig E, Kress B, Hähnel S, Sartor K. Fully automated localization of the human primary somatosensory cortex in one minute by functional magnetic resonance imaging.  Neuroscience Letters. 2004;  364 90-93
  • 22 Stippich C, Romanowski A, Nennig E, Kress B, Sartor K. Time-efficient localization of the human secondary somatosensory cortex by functional magnetic resonance imaging.  Neuroscience Letters. 2005;  381 264-268
  • 23 Rutten G J, Ramsey N F, van Rijen P C, Noordmans H J, van Veelen C W. Development of a functional magnetic resonance imaging protocol for intraoperative localization of critical temporoparietal language areas.  Ann Neurol. 2002;  51 350-360
  • 24 Stippich C, Kress B, Ochmann H, Tronnier V, Sartor K. Preoperative functional magnetic resonance imaging (fMRI) in patients with rolandic brain tumors: indication, investigation strategy, possibilities and limitations of clinical application.  Fortschr Röntgenstr. 2003;  175 1042-1050
  • 25 Konrad F, Nennig E, Ochmann H, Kress B, Sartor K, Stippich C. Does the individual adaptation of standardized speech paradigms for clinical functional magnetic resonance imaging (fMRI) effect the localization of the language-dominant hemisphere and of Broca’s and Wernicke’s areas?.  Fortschr Röntgenstr. 2005;  177 381-385
  • 26 Naidich T P, Hof P R, Yousry T A, Yousry I. The motor cortex: anatomic substrates of function.  Neuroimaging Clin N Am. 2001;  11 171-193
  • 27 Yousry T A, Schmid U D, Alkadhi H, Schmidt D, Peraud A, Buettner A, Winkler P. Localization of the motor hand area to a knob on the precentral gyrus. A new landmark.  Brain. 1997;  120 141-157
  • 28 Duffau H, Capelle L, Denvil D, Sichez N, Gatignol P, Lopes M, Mitch M C, Sichez J P, Van Effenterre R. Functional recovery after surgical resection of low grade gliomas in eloquent brain: hypothesis of brain compensation.  J Neurol Neurosurg Psychiatry. 2003;  74 901-907
  • 29 Holodny A I, Schulder M, Ybasco A, Liu W C. Translocation of BrocaŽs area to the contralateral hemisphere as the result of the growth of a left inferior frontal glioma.  J Comput Assist Tomogr. 2002;  26 941-943
  • 30 Ojemann G A, Ojemann J G, Lettich E, Berger E. Cortical language localization in left-dominant hemisphere. An electrical stimulation mapping investigation in 117 patients.  J Neurosurg. 1989;  71 316-326
  • 31 Jack C R, Thompson R M, Butts R K, Sharbrough F W, Kelly P J, Hanson D P, Riederer S J, Ehman R L, Hangiandreou N J, Cascino G D. Sensory motor cortex: correlation of presurgical mapping with functional MR and invasive cortical mapping.  Radiology. 1994;  190 85-92
  • 32 Binder J R, Swanson S J, Hammeke T A, Morris G L, Mueller W M, Fischer M, Benbadis S, Frost J A, Rao S M, Haughton V M. Determination of language dominance using functional MRI: a comparison with the Wada-test.  Neurology. 1996;  46 978-984
  • 33 Cosgrove G R, Buchbinder B R, Jiang H. Functional magnetic resonance imaging for intracranial navigation.  Neurosurg Clin N Am. 1996;  7 313-322
  • 34 Roberts D W, Hartov A, Kennedy F E, Miga M I, Paulsen K D. Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases.  Neurosurgery. 1998;  43 749-758 (760)
  • 35 Hajnal J V, Mayers R, Oatridge A, Schwieso J E, Young J R, Bydder G M. Artifacts due to stimulus correlated motion in functional imaging of the brain.  Magn Reson Med. 1994;  31 283-291
  • 36 Hoeller M, Krings T, Reinges M H, Hans F J, Gilsbach J M, Thron A. Movement artefacts and MR BOLD signal increase during different paradigms for mapping the sensorimotor cortex.  Acta Neurochir. 2002;  144 279-284
  • 37 Krings T, Reinges M H, Erberich S G, Kemeny S, Rohde V, Spetzger U, Korinth M, Willmes K, Gilsbach J M, Thron A. Functional MRI for presurgical planning: problems, artefacts, and solution strategies.  J Neurol Neurosurg Psychiatry. 2001;  70 749-760
  • 38 Krings T, Erberich S G, Roessler F, Reul J, Thron A. MR blood oxygenation level-dependent signal differences in parenchymal and large draining vessels: implications for functional MR imaging.  AJNR. 1999;  20 1907-1914
  • 39 Holodny A I, Schulder M, Liu W C, Maldjian J A, Kalnin A J. Decreased BOLD functional MR activation of the motor and somatosensory cortices adjacent to a glioblastome multiforme: implications for image-guided neurosurgery.  AJNR. 1999;  20 609-612
  • 40 Schmithorst V J, Dardzinski B J, Holland S K. Simultaneous correction of ghost and geometric distortion artifacts in EPI using a multiecho reference scan.  IEEE Trans Med Imaging. 2001;  20 535-539

PD Dr. med. Christoph Stippich

Abteilung Neuroradiologie · Neurologische Klinik · Universitätsklinikum Heidelberg

Im Neuenheimer Feld 400 · 69120 Heidelberg

Phone: 06221 5639607

Email: christoph_stippich@med.uni-heidelberg.de

    >