Horm Metab Res 2005; 37(12): 729-733
DOI: 10.1055/s-2005-921093
Original Basic
© Georg Thieme Verlag KG Stuttgart · New York

Influence of Oxygen Concentration on Redox Cycling of Alloxan and Dialuric Acid

H.  J.  Brömme1 , R.  Weinandy2 , E.  Peschke3
  • 1Institute of Pathophysiology, Martin Luther University of Halle-Wittenberg, Germany
  • 2Institute of Zoology, Martin Luther University of Halle-Wittenberg, Germany
  • 3Institute of Anatomy & Cell Biology, Martin Luther University of Halle-Wittenberg, Germany
Further Information

Publication History

Received 25 April 2005

Accepted after revision 5 July 2005

Publication Date:
22 December 2005 (online)

Abstract

Alloxan, a chemical diabetogen, decays in the absence of reductants into alloxanic acid. In the presence of glutathione, it is reduced via the alloxan radical into dialuric acid, which autoxidizes back to alloxan. During this redox cycling process, reactive oxygen species are formed that destroy β-cells in islets of Langerhans. Previous experiments were conducted with oxygen concentrations about ten times as high as within cells. The aim of our in vitro study was to evaluate the impact of different oxygen concentrations (0, 25, 250 µmol/l) at a given initial ratio of glutathione and alloxan on this redox cycling. Reduction of alloxan, oxidation of glutathione, and the formation of glutathiol (GSSG) were continuously recorded by HPLC for 90 minutes at 25 °C in air, calibration gas, or argon. In the absence of reductants, alloxan irreversibly decomposed into alloxanic acid regardless of oxygen presence. When the reaction system contained glutathione, decomposition was significantly retarded and therefore influenced by oxygen. In argon, decay could not be observed due to its reduction and the absence of oxygen. Increasing oxygen concentration enabled a redox cycling and therefore an ongoing decay. The highest decomposition along with the highest consumption of glutathione occurred at 250 µmol/l oxygen. The lower the oxygen, the more dialuric acid could be detected. After calculation, about 33 redox cycles per hour generates an amount of reactive oxygen species sufficient to damage pancreatic beta cells and induce insulin deficiency.

References

  • 1 Resnik R, Wolff A. The reaction of alloxan with glutathione and protein.  Arch Biochem Biophys. 1956;  64 33-50
  • 2 Patterson J, Lazarow A, Levey S. Alloxan and dialuric acid: their stabilities and ultraviolet absorption spectra.  J Biol Chem. 1949;  177 187-196
  • 3 Halliwell B, Gutteridge J MC. Free Radicals in Biology and Medicine. Third Edition ed. Oxford; Oxford University Press 1999
  • 4 Lenzen S, Panten U. Alloxan: history and mechanism of action.  Diabetologia. 1988;  31 337-342
  • 5 Munday R. Dialuric acid autoxidation. Effects of transition metals on the reaction rate and on the generation of “active oxygen” species.  Biochem Pharmacol. 1988;  37 409-413
  • 6 Oberley L W. Free radicals and diabetes.  Free Radic Biol Med. 1988;  5 113-124
  • 7 Brömme H J, Peschke E. Molekulare Mechanismen der Alloxan-Toxizität sowie die radikalfangende und antidiabetogene Bedeutung von Melatonin. Abhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig.  Mathematisch-naturwissenschaftliche Klasse. 2003;  60 137-162
  • 8 Brömme H J. et al . Simultaneous quantitative determination of alloxan, GSH and GSSG by HPlc. Estimation of the frequency of redox cycling between alloxan and dialuric acid.  Horm Metab Res. 2001;  33 106-109
  • 9 Winterbourn C, Cowden W, Sutton H. Auto-oxidation of dialuric acide, divicine and isouramil. Superoxide dependent and independent mechanism.  Biochem Pharmacol. 1989;  38 611-618
  • 10 Washburn M, Wells W. Glutathion dependent reduction of alloxan to dialuric acid catalyzed by thioltransferase (glutaredoxin): a possible role for thioltransferase in alloxan toxicity.  Free Radical Biol Med. 1997;  23 563-570
  • 11 Lenzen S, Munday R. Thiol-group reactivity, hydrophilicity and stability of alloxan, its reduction products and its N-methyl derivatives and comparison with ninhydrin.  Biochem Pharmacol. 1991;  42 1385-1391
  • 12 Richter C. Reactive oxygen and nitrogen species regulate mitochondrial Ca2+ homeostasis and respiration.  Biosci Rep. 1997;  17 53-66
  • 13 Gnaiger E. et al . Mitochondrial respiration in the low oxygen environment of the cell. Effect of ADP on oxygen kinetics.  Biochim Biophys Acta. 1998;  1365 249-254
  • 14 Frerichs H, Creutzfeldt W. Der experimentelle chemische Diabetes. In: Dörzbach E (ed) Handbuch der experimentellen Pharmakologie, Insulin Teil 1. Berlin, Heidelberg, New York; Springer Verlag 1971: 159-202
  • 15 Jones D P, Brown L A, Sternberg P. Variability in glutathione-dependent detoxication in vivo and its relevance to detoxication of chemical mixtures.  Toxicology. 1995;  105 267-274
  • 16 Naidu K A. Vitamin C in human health and disease is still a mystery? An overview.  Nitrition J. 2003;  2 1-10
  • 17 Navarro J. et al . Blood glutathione as an index of radiation-induced oxidative stress in mice and humans.  Free Radic Biol Med. 1997;  22 1203-1209
  • 18 Gomori G, Goldner M. Acute nature of alloxan damage.  Proc Soc exp Biol (N.Y.). 1945;  58 232-233
  • 19 Weaver D C, McDaniel M, Lacy P E. Alloxan uptake by isolated islets of Langerhans.  Endocrinology. 1978;  102 1874-1855
  • 20 Elsner M. et al . Importance of the GLUT2 glucose transporter for pancreatic beta cell toxicity of alloxan.  Diabetologia. 2002;  45 1542-1549
  • 21 Elsner M, Tiedge M, Lenzen S. Mechanism underlying resistance of human pancreatic beta cells against toxicity of streptozotocin and alloxan.  Diabetologia. 2003;  46 1713-1714
  • 22 Brömme H J. et al . Alloxan acts as a prooxidant only under reducing conditions: influence of melatonin.  Cell Mol Life Sci. 1999;  55 487-493
  • 23 Lenzen S, Drinkgern J, Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues.  Free Radic Biol Med. 1996;  20 463-466

Doz. Dr. rer. nat. habil. Hans-Jürgen Brömme

Institute of Pathophysiology, Martin Luther University of Halle-Wittenberg

Ernst-Grube-Str. 40 · 06097 Halle (Saale) · Germany

Phone: + 49 345 557-4009 ·

Email: h-j.broemme@medizin.uni-halle.de

    >