Int J Sports Med 2007; 28(1): 40-47
DOI: 10.1055/s-2006-923856
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Reproducibility of Time at or near V·O2max during Intermittent Treadmill Running

A. W. Midgley1 , L. R. McNaughton1 , S. Carroll1
  • 1University of Hull, Department of Sport, Health and Exercise Science, Hull, England
Further Information

Publication History

Accepted after revision: December 5, 2005

Publication Date:
14 February 2006 (online)

Abstract

The purpose of this study was to determine the reproducibility of time at or above 90 % (t90 % V·O2max) and 95 % (t95 % V·O2max) maximal oxygen uptake during an intermittent treadmill run to exhaustion. Twenty-two distance runners (age 38.0 ± 7.1 yrs) performed two identical incremental and two identical intermittent tests on four separate days. Respiratory exchange was measured continuously throughout each test by an automated open-circuit gas analysis system. The incremental test consisted of increases in treadmill speed every minute until volitional exhaustion. The highest averaged 30-s oxygen uptake (V·O2) value was defined as V·O2max and the minimum speed that elicited V·O2max was defined as vV·O2max. The intermittent test consisted of 30-s work intervals ran at 105 % vV·O2max interspersed by 30-s relief intervals ran at 60 % vV·O2max and was continued until volitional exhaustion. The time that V·O2 was at or above 90 % and 95 % of the mean maximum values elicited during the two previous incremental tests was determined for the intermittent tests. The mean t95 % V·O2max was 232 (SD 174) s and 244 (SD 195) s and the mean t90 % V·O2max was 480 (SD 220) s and 488 (SD 252) s, for trial 1 and trial 2, respectively. Reproducibility statistics for t95 % V·O2max and t90 % V·O2max, respectively, were: 95 % limits of agreement 12 ± 227 s and 8 ± 328 s; coefficient of variation 34.5 % and 24.5 %; and intraclass correlation coefficient 0.80 and 0.75. Statistical power analysis indicated that this level of reproducibility would allow mean differences of 15 - 20 % between intermittent training protocols to attain statistical significance in future experimental research, with sample sizes probably within the resources of most researchers.

References

  • 1 Atkinson G, Nevill A M. Selected issues in the design and analysis of sport performance research.  J Sports Sci. 2001;  19 811-827
  • 2 Baumgartner T A. Norm-referenced measurement: reliability. Safrit MJ, Wood TM Measurement Concepts in Physical Education and Exercise Science. Champaign, IL, USA; Human Kinetics 1989: 45-72
  • 3 Billat V L. Interval training for performance: a scientific and empirical practice: special recommendations for middle- and long-distance running. Part 1: aerobic interval training.  Sports Med. 2001;  31 13-31
  • 4 Billat V L, Blondel N, Berthoin S. Determination of the velocity associated with the longest time to exhaustion at maximal oxygen uptake.  Eur J Appl Physiol. 1999;  80 159-161
  • 5 Billat V L, Bocquet V, Slawinski J, Lafitte L, Demarle A, Chassaing P, Koralsztein J P. Effect of a prior intermittent run at vV·O2max on oxygen uptake kinetics during an all-out severe run in humans.  J Sports Med Phys Fitness. 2000;  40 185-194
  • 6 Billat V L, Lepretre P ‐M, Heubert R P, Koralsztein J P, Gazeau F P. Influence of acute moderate hypoxia on time to exhaustion in unacclimatised runners.  Int J Sports Med. 2003;  24 9-14
  • 7 Billat V L, Renoux J C, Pinoteau J, Petit B, Koralsztein J P. Reproducibility of running time to exhaustion at V·O2max in subelite runners.  Med Sci Sports Exerc. 1994;  26 254-257
  • 8 Billat V L, Slawinski J, Bocquet V, Chassaing P, Demarle A, Koralsztein J P. Very short (15 s-15 s) interval-training around the critical velocity allows middle-aged runners to maintain V·O2max for 14 minutes.  Int J Sports Med. 2001;  22 201-208
  • 9 Billat V L, Slawinski J, Bocquet V, Demarle A, Lafitte L, Chassaing P, Koralsztein J P. Intermittent runs at the velocity associated with maximal oxygen uptake enables subjects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs.  Eur J Appl Physiol. 2000;  81 188-196
  • 10 Bland J M, Altman D G. Measuring agreement in method comparison studies.  Stat Meth Med Res. 1999;  8 135-160
  • 11 Buchfuhrer M J, Hansen J E, Robinson T E, Sue D Y, Wasserman K, Whipp B J. Optimizing the exercise protocol for cardiopulmonary assessment.  J Appl Physiol. 1983;  55 1558-1564
  • 12 Carter H, Jones A M, Maxwell N S, Doust J H. The effect of interdian and diurnal variation on oxygen kinetics during treadmill running.  J Sports Sci. 2002;  20 901-909
  • 13 Clausen J P. Effect of physical training on cardiovascular adjustments to exercise in man.  Physiol Rev. 1977;  57 779-815
  • 14 Cooper G. Basic determinants of myocardial hypertrophy: a review of molecular mechanisms.  Annu Rev Med. 1997;  48 13-23
  • 15 Daniels J, Scardina N. Interval training and performance.  Sports Med. 1984;  1 327-334
  • 16 Demarie S, Koralsztein J P, Billat V. Time limit and time at V·O2max during a continuous and an intermittent run.  J Sports Med Phys Fitness. 2000;  40 96-102
  • 17 Dupont G, Berthoin S. Time spent at a high percentage of V·O2max for short intermittent runs: active versus passive recovery.  Can J Appl Physiol. 2004;  29 S3-S16
  • 18 Dupont G, Blondel N, Berthoin S. Time spent at V·O2max: a methodological issue.  Int J Sports Med. 2003;  24 291-297
  • 19 Dupont G, Blondel N, Lensel G, Berthoin S. Critical velocity and time spent at a high level of V·O2max for short intermittent runs at supramaximal velocities.  Can J Appl Physiol. 2002;  27 103-115
  • 20 Gledhill N, Cox D, Jamnik R. Endurance athletes' stroke volume does not plateau: major advantage is diastolic function.  Med Sci Sports Exerc. 1994;  26 1116-1121
  • 21 Harling S A, Tong R J, Mickleborough T D. The oxygen uptake response running to exhaustion at peak treadmill speed.  Med Sci Sports Exerc. 2003;  35 663-668
  • 22 Hill D W, Ferguson C S. A physiological description of critical velocity.  Eur J Appl Physiol. 1999;  79 290-293
  • 23 Hill D W, Rowell A L. Responses to exercise at the velocity associated with V·O2max.  Med Sci Sports Exerc. 1997;  29 113-116
  • 24 Hill D W, Williams C S, Burt S E. Responses to exercise at 92 % and 100 % of the velocity associated with V·O2max.  Int J Sports Med. 1997;  18 325-329
  • 25 Hopkins W G. Measures of reliability in sports medicine and science.  Sports Med. 2000;  30 1-15
  • 26 Howley E T, Bassett D R, Welch H G. Criteria for maximal oxygen uptake: review and commentary.  Med Sci Sports Exerc. 1995;  27 1292-1301
  • 27 Jones A M, Doust J H. A 1 % treadmill grade most accurately reflects the energetic cost of outdoor running.  J Sports Sci. 1996;  14 321-327
  • 28 Katch V L, Sady S S, Freedson P. Biological variability in maximum aerobic power.  Med Sci Sports Exerc. 1982;  14 21-25
  • 29 Lamarra N, Whipp B J, Ward S A, Wasserman K. Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics.  J Appl Physiol. 1987;  62 2003-2012
  • 30 Laursen P B, Shing C M, Jenkins D G. Reproducibility of the cycling time to exhaustion at V·O2peak in highly trained cyclists.  Can J Appl Physiol. 2003;  28 605-615
  • 31 Laursen P B, Shing C M, Jenkins D G. Temporal aspects of the V·O2 response at the power output associated with V·O2peak in well trained cyclists - implications for interval training prescription.  Res Q Exerc Sport. 2004;  75 423-428
  • 32 Laursen P B, Shing C M, Peake J M, Coombes J S, Jenkins D G. Interval training program optimisation in highly trained endurance cyclists.  Med Sci Sports Exerc. 2002;  34 1801-1807
  • 33 Meyer T, Davison R CR, Kinderman W. Ambulatory gas exchange measurements - current status and future options.  Int J Sports Med. 2005;  26 S1-S9
  • 34 Midgley A W, McNaughton L R. Time at or near V·O2max during continuous and intermittent running: a review with special reference to considerations for the optimisation of training protocols to elicit the longest time at or near V·O2max.  J Sports Med Phys Fitness. In Press; 
  • 35 Midgley A W, McNaughton L R, Wilkinson M. Is there an optimal training intensity for enhancing the V·O2max of distance runners? Empirical research findings, current opinions, physiological rationale and practical recommendations.  Sports Med. In Press; 
  • 36 Millet G P, Candau R, Fattori B, Varray A. V·O2 responses to different intermittent runs at velocity associated with V·O2max.  Can J Appl Physiol. 2003;  28 410-423
  • 37 Millet G P, Libicz S, Borrani F, Fattori F, Bignot F, Candau R. Effects of increased intensity of intermittent training in runners with differing V·O2 kinetics.  Eur J Appl Physiol. 2003;  90 50-57
  • 38 Müller R, Büttner P. A critical discussion of intraclass correlation coefficients.  Stat Med. 1994;  13 2465-2476
  • 39 Ouellet Y, Poh S C, Becklake M R. Circulatory factors limiting maximal aerobic exercise capacity.  J Appl Physiol. 1969;  27 874-880
  • 40 Potter C R, Childs D J, Houghton W, Armstrong N. Breath-by-breath “noise” in the ventilatory and gas exchange responses of children to exercise.  Eur J Appl Physiol. 1999;  80 118-124
  • 41 Russell R D, Redmann S M, Ravussin E, Hunter G R, Larson-Meyer D E. Reproducibility of endurance performance on a treadmill using a preloaded time trial.  Med Sci Sports Exerc. 2004;  36 717-724
  • 42 Saltin B, Rowell L B. Functional adaptations to physical activity and inactivity.  Fed Proc. 1980;  39 1506-1513
  • 43 Shapiro S S, Wilk M B. An analysis of variance test for normality (complete samples).  Biometrika. 1965;  52 591-611
  • 44 Tabata I, Irisawa K, Kouzaki M, Nishimura K, Ogita F, Miyachi M. Metabolic profile of high intensity intermittent exercises.  Med Sci Sports Exerc. 1997;  29 390-395
  • 45 Tardieu-Berger M, Thevenet D, Zouhal H, Prioux J. Effects of active recovery between series on performance during an intermittent exercise model in young endurance athletes.  Eur J Appl Physiol. 2004;  93 145-152
  • 46 Vincent W J. Statistics in Kinesiology (2nd ed.). Champaign, IL, USA; Human Kinetics 1999: 182-185
  • 47 Vuorimaa T, Karvonen J. Recovery time in interval training for increasing aerobic capacity.  Ann Sports Med. 1988;  3 215-219
  • 48 Wenger H A, McNab R BJ. Endurance training: the effects of intensity, total work, duration and initial fitness.  J Sports Med Phys Fitness. 1975;  15 199-211
  • 49 Zhou B, Conlee R K, Jensen R, Fellingham G W, George J D, Fisher A G. Stroke volume does not plateau during graded exercise in elite male distance runners.  Med Sci Sports Exerc. 2001;  33 1849-1854

Prof. Lars McNaughton

University of Hull, Department of Sport, Health and Exercise Science

Cottingham Road

Hull HU6 7RX

England

Phone: + 441482466927

Fax: + 44 14 82 46 61 33

Email: l.mcnaughton@hull.ac.uk

    >