Int J Sports Med 2007; 28(3): 181-185
DOI: 10.1055/s-2006-924216
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Evidence of Decrease in Peak Heart Rate in Acute Hypoxia: Effect of Exercise-Induced Arterial Hypoxemia

O. Grataloup1 , T. Busso1 , J. Castells1 , C. Denis1 , H. Benoit1
  • 1Unité de recherche Physiologie et Physiopathologie de l'Exercice et Handicap, Université J. Monnet, Saint-Etienne, France
Further Information

Publication History

Accepted after revision: March 25, 2006

Publication Date:
16 November 2006 (online)

Abstract

This study focuses on the influence of the arterial oxygen saturation level at exhaustion on peak heart rate under acute moderate hypoxia, in endurance-trained subjects. Nineteen competing male cyclists performed exhaustive ramp exercise (cycle ergometer) under normoxia and normobaric hypoxia (15 % O2). After the normoxic trial, the subjects were divided into those demonstrating exercise-induced arterial hypoxemia during exercise (> 5 % decrease in SaO2 between rest and the end of exercise, n = 10) and those who did not (n = 9). O2 uptake, heart rate and arterial O2 saturation (ear-oximeter) levels were measured. Under hypoxia, peak heart rate decreased for both groups (p < 0.001) and to a greater extent for hypoxemic subjects (p < 0.01). Arterial O2 saturation under hypoxia was lower for the hypoxemic than for the non-hypoxemic subjects (p < 0.001) and it was correlated to the fall in peak heart rate between normoxia and hypoxia for all subjects (p < 0.01; r = 0.65). Hypoxemic subjects presented greater decrease in maximal O2 uptake than non-hypoxemic ones (19.6 vs. 15.6 %; p < 0.05). The results confirm the greater decrement in arterial O2 saturation under hypoxia in hypoxemic subjects and demonstrates a more pronounced reduction in peak heart rate in those subjects compared with non-hypoxemic ones. These data confirm the possible influence of arterial oxygenation on the decrease in peak heart rate in acute hypoxia.

References

  • 1 Barthelemy J C, Geyssant A, Riffat J, Antoniadis A, Berruyer J, Lacour J R. Accuracy of pulse oximetry during moderate exercise: a comparative study.  Scand J Clin Lab Invest. 1990;  50 533-539
  • 2 Benoit H, Busso T, Castells J, Denis C, Geyssant A. Influence of hypoxic ventilatory response on arterial O2 saturation during maximal exercise in acute hypoxia.  Eur J Appl Physiol. 1995;  72 101-105
  • 3 Benoit H, Busso T, Castells J, Geyssant A, Denis C. Decrease in peak heart rate with acute hypoxia in relation to sea level V·O2max.  Eur J Appl Physiol. 2003;  90 514-519
  • 4 Benoit H, Costes F, Feasson L, Lacour J R, Roche F, Denis C, Geyssant A, Barthelemy J C. Accuracy of pulse oximetry during intense exercise under severe hypoxic conditions.  Eur J Appl Physiol. 1997;  76 260-263
  • 5 Bogaard H J, Hopkins S R, Yamaya Y, Niizeki K, Ziegler M G, Wagner P D. Role of the autonomic nervous system in the reduced maximal cardiac output at altitude.  J Appl Physiol. 2002;  93 271-279
  • 6 Boushel R, Calbet J A, Radegran G, Sondergaard H, Wagner P D, Saltin B. Parasympathetic neural activity accounts for the lowering of exercise heart rate at high altitude.  Circul. 2001;  104 1785-1791
  • 7 Boutellier U, Koller E A. Propranolol and the respiratory, circulatory, and ECG responses to high altitude.  Eur J Appl Physiol. 1981;  46 105-119
  • 8 Calbet J A, Boushel R, Radegran G, Sondergaard H, Wagner P D, Saltin B. Determinants of maximal oxygen uptake in severe acute hypoxia.  Am J Physiol. 2003;  284 R291-R303
  • 9 Cerretelli (ed) P. Gas exchange at high altitude. Pulmonary Gas Exchange. New York; Academic Press 1980: 97-147
  • 10 Gore C J, Hahn A G, Scroop G C, Watson D B, Norton K I, Wood R J, Campbell D P, Emonson D L. Increased arterial desaturation in trained cyclists during maximal exercise at 580 m altitude.  J Appl Physiol. 1996;  80 2204-2210
  • 11 Grataloup O, Prieur F, Busso T, Castells J, Favier F B, Denis C, Benoit H. Effect of hyperoxia on maximal O2 uptake in exercise-induced arterial hypoxaemic subjects.  Eur J Appl Physiol. 2005;  94 641-645
  • 12 Hartley L H, Vogel J A, Cruz J C. Reduction of maximal exercise heart rate at altitude and its reversal with atropine.  J Appl Physiol. 1974;  36 362-365
  • 13 Kacimi R, Richalet J P, Corsin A, Abousahl I, Crozatier B. Hypoxia-induced downregulation of beta-adrenergic receptors in rat heart.  J Appl Physiol. 1992;  73 1377-1382
  • 14 Kacimi R, Richalet J P, Crozatier B. Hypoxia-induced differential modulation of adenosinergic and muscarinic receptors in rat heart.  J Appl Physiol. 1993;  75 1123-1128
  • 15 Lawler J, Powers S K, Thompson D. Linear relationship between V·O2max and V·O2max decrement during exposure to acute hypoxia.  J Appl Physiol. 1988;  64 1486-1492
  • 16 Lundby C, Araoz M, van Hall G. Peak heart rate decreases with increasing severity of acute hypoxia.  High Alt Med Biol. 2001;  2 369-376
  • 17 Martin D, O'Kroy J. Effects of acute hypoxia on the V·O2max of trained and untrained subjects.  J Sports Sci. 1993;  11 37-42
  • 18 Mucci P, Blondel N, Fabre C, Nourry C, Berthoin S. Evidence of exercise-induced O2 arterial desaturation in non-elite sportsmen and sportswomen following high intensity interval-training.  Int J Sports Med. 2004;  25 6-13
  • 19 Mucci P, Prioux J, Hayot M, Ramonatxo M, Prefaut C. Ventilation response to CO2 and exercise-induced hypoxaemia in master athletes.  Eur J Appl Physiol. 1998;  77 343-351
  • 20 Prefaut C, Durand F, Mucci P, Caillaud C. Exercise-induced arterial hypoxaemia in athletes: a review.  Sports Med. 2000;  30 47-61
  • 21 Roach R C. Cardiovascular regulation during hypoxia.  Exerc Circul Health Dis. 2000;  1 177-194
  • 22 Robergs R A, Quintana R, Parker D L, Frankel C C. Multiple variables explain the variability in the decrement in V·O2max during acute hypobaric hypoxia.  Med Sci Sports Exerc. 1998;  30 869-879
  • 23 Roche F, Reynaud C, Pichot V, Duverney D, Costes F, Garet M, Gaspoz J M, Barthelemy J C. Effect of acute hypoxia on QT rate dependence and corrected QT interval in healthy subjects.  Am J Cardiol. 2003;  91 916-919
  • 24 Saurenmann P, Koller E A. The ECG changes due to altitude and to catecholamines.  Eur J Appl Physiol. 1984;  53 35-42
  • 25 Savard G K, Areskog N H, Saltin B. Cardiovascular response to exercise in humans following acclimatization to extreme altitude.  Acta Physiol Scand. 1995;  154 499-509
  • 26 Shephard R J, Bouhlel E, Vandewalle H, Monod H. Peak oxygen intake and hypoxia: influence of physical fitness.  Int J Sports Med. 1988;  9 279-283
  • 27 Wagner J A, Miles D S, Horvath S M, Reyburn J A. Maximal work capacity of women during acute hypoxia.  J Appl Physiol. 1979;  47 1223-1227
  • 28 Wagner P D. Reduced maximal cardiac output at altitude-mechanisms and significance.  Respir Physiol. 2000;  120 1-11
  • 29 Werle E O, Strobel G, Weicker H. Decrease in rat cardiac beta 1- and beta 2-adrenoceptors by training and endurance exercise.  Life Sci. 1990;  46 9-17
  • 30 Woorons X, Mollard P, Lamberto C, Letournel M. Effect of acute hypoxia on maximal exercise in trained and sedentary women.  Med Sci Sports Exerc. 2005;  37 147-154
  • 31 Zavorsky G S. Evidence and possible mechanisms of altered maximum heart rate with endurance training and tapering.  Sports Med. 2000;  29 13-26

Olivier Grataloup

Médecine du Sport et Myologie
CHU Bellevue

Boulevard Pasteur

42055 Saint Etienne cedex 2

France

Phone: + 33 4 77 12 79 85

Fax: + 33 4 77 12 72 29

Email: olivier.grataloup@gmail.com

    >