Plant Biol (Stuttg) 2007; 9(1): 4-20
DOI: 10.1055/s-2006-924473
Review Article

Georg Thieme Verlag Stuttgart KG · New York

Role of 2,4-Diacetylphloroglucinol-Producing Fluorescent Pseudomonas spp. in the Defense of Plant Roots

D. M. Weller1 , B. B. Landa2 , O. V. Mavrodi3 , K. L. Schroeder3 , L. De La Fuente3 , S. Blouin Bankhead3 , R. Allende Molar3 , R. F. Bonsall3 , D. V. Mavrodi3 , L. S. Thomashow1
  • 1USDA‐ARS Root Disease and Biological Control Research Unit, Washington State University, P.O. Box 646430, 367 Johnson Hall, Pullman, WA 99164-6430, USA
  • 2Departamento de Agronomia, Universitad de Córdoba, Apdo. 3084, 14080 Córdoba, Spain
  • 3Department of Plant Pathology, Washington State University, P.O. Box 646430, Pullman, WA 99164-6430, USA
Further Information

Publication History

Received: August 14, 2004

Accepted: June 26, 2006

Publication Date:
23 October 2006 (online)

Abstract

Plants have evolved strategies of stimulating and supporting specific groups of antagonistic microorganisms in the rhizosphere as a defense against diseases caused by soilborne plant pathogens owing to a lack of genetic resistance to some of the most common and widespread soilborne pathogens. Some of the best examples of natural microbial defense of plant roots occur in disease suppressive soils. Soil suppressiveness against many different diseases has been described. Take-all is an important root disease of wheat, and soils become suppressive to take-all when wheat or barley is grown continuously in a field following a disease outbreak; this phenomenon is known as take-all decline (TAD). In Washington State, USA and The Netherlands, TAD results from the enrichment during monoculture of populations of 2,4-diacetylphloroglucinol (2,4-DAPG)-producing Pseudomonas fluorescens to a density of 105 CFU/g of root, the threshold required to suppress the take-all pathogen, Gaeumannomyces graminis var. tritici. 2,4-DAPG-producing P. fluorescens also are enriched by monoculture of other crops such as pea and flax, and evidence is accumulating that 2,4-DAPG producers contribute to the defense of plant roots in many different agroecosystems. At this time, 22 distinct genotypes of 2,4-DAPG producers (designated A - T, PfY and PfZ) have been defined by whole-cell repetitive sequence-based (rep)-PCR analysis, restriction fragment length polymorphism (RFLP) analysis of phlD, and phylogenetic analysis of phlD, but the number of genotypes is expected to increase. The genotype of an isolate is predictive of its rhizosphere competence on wheat and pea. Multiple genotypes often occur in a single soil and the crop species grown modulates the outcome of the competition among these genotypes in the rhizosphere. 2,4-DAPG producers are highly effective biocontrol agents against a variety of plant diseases and ideally suited for serving as vectors for expressing other biocontrol traits in the rhizosphere.

References

  • 1 Abbas A., Morrissey J. P., Marquez P. C., Sheehan M. M., Delany I. R., O'Gara F.. Characterization of interactions between the transcriptional repressor PhlF and its binding site at the phlA promoter in Pseudomonas fluorescens F113.  Journal of Bacteriology. (2002);  184 3008-3016
  • 2 Achkar J., Xian M., Zhao H., Frost J. W.. Biosynthesis of phloroglucinol.  Journal of the American Chemical Society. (2005);  127 5332-5333
  • 3 Alabouvette C.. Fusarium wilt-suppressive soils from the Chateaurenard region: review of a 10-year study.  Agronomie. (1986);  6 273-284
  • 4 Alabouvette C.. Biological control of Fusarium wilt pathogens in suppressive soils. Hornby, D., ed. Biological Control of Soil-Borne Plant Pathogens. Wallingford; CAB International (1990): 27-43
  • 5 Alabouvette C., Lemanceau P., Steinberg C.. Recent advances in the biological control of Fusarium wilts.  Pesticide Science. (1993);  37 365-373
  • 6 Andrews J. H., Harris R. F.. The ecology and biogeography of microorganisms on plant surfaces.  Annual Review of Phytopathology. (2000);  38 145-180
  • 7 Atkinson T. G., Neal J. L., Larson R. I.. Genetic control of the rhizosphere microflora of wheat. Bruehl, G. W., ed. Biology and Control of Soil-Borne Plant Pathogens. St. Paul, MN; American Phytopathological Society (1975): 116-122
  • 8 Baehler E., Bottiglieri M., Pechy-Tarr M., Maurhofer M., Keel C.. Use of green fluorescent protein-based reporters to monitor balanced production of antifungal compounds in the biocontrol agent Pseudomonas fluorescens CHA0.  Journal of Applied Microbiology. (2005);  99 24-38
  • 9 Baehler B., de Werra P., Wick L. Y., Péchy-Tarr M., Mathys S., Maurhofer M., Keel C.. Two novel MvaT-like global regulators control exoproduct formation and biocontrol activity in root-associated Pseudomonas fluorescens CHA0.  Molecular Plant-Microbe Interactions. (2006);  19 313-329
  • 10 Baker K. F., Cook R. J.. Biological Control of Plant Pathogens. San Francisco; W. H. Freeman (1974): 433
  • 11 Bakker P. A. H. M., Lamers J. G., Bakker A. W., Marugg J. D., Weisbeek P. J., Schippers B.. The role of siderophores in potato tuber yield increase by Pseudomonas putida in a short rotation of potato.  Netherlands Journal of Plant Pathology. (1986);  92 249-256
  • 12 Bangera M. G., Thomashow L. S.. Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87.  Journal of Bacteriology. (1999);  181 3155-3163
  • 13 Bergsma-Vlami M., Prins M. E., Raaijmakers J. M.. Influence of plant species on population dynamics, genotypic diversity and antibiotic production in the rhizosphere by indigenous Pseudomonas spp.  FEMS Microbiology Ecology. (2005 a);  52 59-69
  • 14 Bergsma-Vlami M., Prins M. E., Staats M., Raaijmakers J. M.. Assessment of genotypic diversity of antibiotic-producing Pseudomonas species in the rhizosphere by denaturing gradient gel electrophoresis.  Applied and Environmental Microbiology. (2005 b);  71 993-1003
  • 15 Blankenfeldt W., Kuzin A. P., Skarina T., Korniyenko Y., Tong L., Bayer P., Janning P., Thomashow L. S., Mavrodi D. V.. Structure and function of the phenazine biosynthetic protein PhzF from Pseudomonas fluorescens.  Proceedings of the National Academy of Sciences of the USA. (2004);  101 16431-16436
  • 16 Blouin Bankhead S., Landa B. B., Lutton E., Weller D. M., McSpadden-Gardener B. B.. Minimal changes in rhizobacterial population structure following root colonization by wild type and transgenic biocontrol strains.  FEMS Microbiology Ecology. (2004);  49 307-318
  • 17 Bonsall R. F., Weller D. M., Thomashow L. S.. Quantification of 2,4-diacetylphloroglucinol produced by fluorescent Pseudomonas spp. in vitro and in the rhizosphere of wheat.  Applied and Environmental Microbiology. (1997);  63 951-955
  • 18 Bottiglieri M., Keel C.. Characterization of PhlG, a hydrolase that specifically degrades the antifungal compound 2,4-diacetylphloroglucinol in the biocontrol agent Pseudomonas fluorescens CHA0.  Applied and Environmental Microbiology. (2006);  72 418-427
  • 19 Bull C. T., Weller D. M., Thomashow L. S.. Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strain 2-79.  Phytopathology. (1991);  81 954-959
  • 20 Campbell R., Greaves M. P.. Anatomy and community structure of the rhizosphere. Lynch, J. M., ed. The Rhizosphere. Chichester; Wiley and Son (1990): 11-34
  • 21 Chin-A-Woeng T. F. C., Bloemberg G. V., van der Bij A. J., van der Drift K. M. G. M., Schripsema J., Kroon B., Scheffer R. J., Keel C., Bakker P. A. H. M., Tichy H.-S., de Bruijn F. J., Thomas-Oates J. E., Lugtenberg B. J. J.. Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici.  Molecular Plant-Microbe Interactions. (1998);  11 1069-1077
  • 22 Chin-A-Woeng T. F. C., Bloemberg G. V., Lugtenberg B. J. J.. Phenazines and their role in biocontrol by Pseudomonas bacteria.  New Phytologist. (2003);  157 503-523
  • 23 Chin-A-Woeng T. F. C., Bloemberg G. V., Mulders I. H. M., Dekkers L. C., Lugtenberg B. J. J.. Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot.  Molecular Plant-Microbe Interactions. (2000);  13 1340-1345
  • 24 Chin-A-Woeng T. F. C., Thomas-Oates J. E., Lugtenberg B. J. J., Bloemberg G. V.. Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains.  Molecular Plant-Microbe Interactions. (2001);  14 1006-1015
  • 25 Cook R. J.. The influence of rotation crops on take-all decline phenomenon.  Phytopathology. (1981);  71 189-192
  • 26 Cook R. J.. Take-all of wheat.  Physiological and Molecular Plant Pathology. (2003);  62 73-86
  • 27 Cook R. J.. Take-all decline: model system in the science of biological control and clue to the success of intensive cropping. Vincent, C., Goettel, M., and Lazarovits, G., eds. Biological Control: Case Studies from Around the World. Wallingford, UK; CABI Publishing (2006) in press
  • 28 Cook R. J., Rovira A. D.. The role of bacteria in the biological control of Gaeumannomyces graminis by suppressive soils.  Soil Biology and Biochemistry. (1976);  8 269-273
  • 29 Cook R. J., Thomashow L. S., Weller D. M., Fujimoto D., Mazzola M., Bangera G., Kim D.-S.. Molecular mechanisms of defense by rhizobacteria against root disease.  Proceedings of the National Academy of Sciences of the USA. (1995);  92 4197-4201
  • 30 Cook R. J., Weller D. M.. Management of take-all in consecutive crops of wheat or barley. Chet, I., ed. Innovative Approaches to Plant Disease Control. New York; Wiley Press (1987): 41-76
  • 31 Corbell N. A., Kraus J., Loper J. E.. A global regulator of secondary metabolite production in Pseudomonas fluorescens Pf-5.  Journal of Bacteriology. (1995);  177 6230-6236
  • 32 Cronin D., Moënne-Loccoz Y., Fenton A., Dunne C., Dowling D. N., O'Gara F.. Role of 2,4-diacetylphloroglucinol in the interaction of the biocontrol pseudomonad strain F113 with the potato cyst nematode Globodera rostochiensis.  Applied and Environmental Microbiology. (1997 a);  63 1357-1361
  • 33 Cronin D., Moënne-Loccoz Y., Fenton A., Dunne C., Dowling D. N., O'Gara F.. Ecological interaction of a biocontrol Pseudomonas fluorescens strain producing 2,4-diacetylphloroglucinol with the soft rot potato pathogen Erwinia carotovora subsp. atroseptica.  FEMS Microbiology Ecology. (1997 b);  23 95-106
  • 34 Deacon J. W.. Biological control of the take-all fungus, Gaeumannomyces graminis, by Phialophora radicicola and similar fungi.  Soil Biology and Biochemistry. (1976);  8 275-283
  • 35 De La Fuente L., Landa B. B., Weller D. M.. Host crop affects rhizosphere colonization and competitiveness of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. .  Phytopathology. (2006 a);  96 751-762
  • 36 De La Fuente L., Mavrodi D. V., Landa B. B., Thomashow L. S., Weller D. M.. phlD-based genetic diversity and detection of genotypes of 2,4-diacetylpholorogucinol-producing Pseudomonas fluorescens. .  FEMS Microbiology Ecology. (2006 b);  56 64-78
  • 37 De La Fuente L., Thomashow L. S., Weller D. M., Bajsa N., Quagliotto L., Chernin L., Arias A.. Pseudomonas fluorescens UP61 isolated from birdsfoot trefoil rhizosphere produces multiple antibiotics and exerts a broad spectrum of biocontrol activity.  European Journal of Plant Pathology. (2004);  110 671-681
  • 38 Delaney S. M., Mavrodi D. V., Bonsall R. F., Thomashow L. S.. phzO - a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30-84.  Journal of Bacteriology. (2001);  183 318-327
  • 39 Delany I., Sheehan M. M., Fenton A., Bardin S., Aarons S., O'Gara F.. Regulation of production of the antifungal metabolite 2,4-diacetylphloroglucinol in Pseudomonas fluorescens F113: genetic analysis of phlF as a transcriptional repressor.  Microbiology. (2000);  146 537-546
  • 40 de Souza J. T., Arnould C., Deulvot C., Lemanceau P., Gianinazzi-Pearson V., Raaijmakers J. M.. Effect of 2,4-diacetylphloroglucinol on Pythium: cellular responses and variation in sensitivity among propagules and species.  Phytopathology. (2003 a);  93 966-975
  • 41 de Souza J. T., Weller D. M., Raaijmakers J. M.. Frequency, diversity, and activity of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in Dutch take-all decline soils.  Phytopathology. (2003 b);  93 54-63
  • 42 Dewan M. M., Sivasithamparam K.. Growth promotion of rotation crop species by a sterile red fungus from wheat and effect of soil temperatures and water potential on its suppression of take-all.  Mycological Research. (1989);  93 156-160
  • 43 Duffy B. K., Défago G.. Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis.  Phytopathology. (1997);  87 1250-1257
  • 44 Duffy B., Keel C., Défago G.. Potential role of pathogen signaling in multitrophic plant-microbe interactions involved in disease protection.  Applied and Environmental Microbiology. (2004);  70 1836-1842
  • 45 Duffy B., Schouten A., Raaijmakers J. M.. Pathogen self-defense to counteract microbial antagonism.  Annual Review of Phytopathology. (2003);  41 501-538
  • 46 Fenton A. M., Stephens P. M., Crowley J., O'Callaghan M., O'Gara F.. Exploitation of gene(s) involved in 2,4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain.  Applied and Environmental Microbiology. (1992);  58 3873-3878
  • 47 Gaffney T. D., Lam S. T., Ligon J., Gates K., Frazelle A., DiMaio J., Hill S., Goodwin S., Torkewitz N., Allshouse A. M., Kempf H.-J., Becker J. O.. Global regulation of expression of antifungal factors by a Pseudomonas fluorescens biological control strain.  Molecular Plant-Microbe Interactions. (1994);  7 455-463
  • 48 Gair R., Mathias P. L., Harvey P. N.. Studies on the cereal nematode populations and cereal yields under continuous or intensive culture.  Annals of Applied Biology. (1969);  63 503-512
  • 49 Garbeva P., van Veen J. A., van Elsas J. D.. Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness.  Annual Review of Phytopathology. (2004);  42 243-270
  • 50 Gerlagh M.. Introduction of Ophiobolus graminis into new polders and its decline.  Netherlands Journal of Plant Pathology. (1968);  74 (Suppl. 2) 1-97
  • 51 Glick B. R.. The enhancement of plant growth by free-living bacteria.  Canadian Journal of Microbiology. (1995);  41 109-117
  • 52 Gould W. D., Hagedorn C., Bardinelli T. R., Zablotowicz M.. New selective media for enumeration and recovery of fluorescent pseudomonads from various habitats.  Applied and Environmental Microbiology. (1985);  49 28-32
  • 53 Gurusiddaiah S., Weller D. M., Sarkar A., Cooks J. R.. Characterization of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis var. tritici and Pythium spp.  Antimicrobial Agents and Chemotherapy. (1986);  29 488-495
  • 54 Haas D., Défago G.. Biological control of soil-borne pathogens by fluorescent pseudomonads.  Nature Reviews Microbiology. (2005);  3 307-319
  • 55 Haas D., Keel C.. Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant diseases.  Annual Review of Phytopathology. (2003);  41 117-153
  • 56 Hammer P. E., Hill D. S., Lam S. T., van Pée K.-H., Ligon J. M.. Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin.  Applied and Environmental Microbiology. (1997);  63 2147-2154
  • 57 Handelsman J., Stabb E. V.. Biocontrol of soilborne plant pathogens.  Plant Cell. (1996);  8 1855-1869
  • 58 Harrison L. A., Letendre L., Kovacevich P., Pierson E. A., Weller D. M.. Purification of an antibiotic effective against Gaeumannomyce graminis var. tritici produced by a biocontrol agent, Pseudomonas aureofaciens.  Soil Biology and Biochemistry. (1993);  25 215-221
  • 60 Heeb S., Valverde C., Gigot-Bonnefoy C., Haas D.. Role of the stress sigma factor RpoS in GacA/RsmA-controlled secondary metabolism and resistance to oxidative stress in Pseudomonas fluorescens CHA0.  FEMS Microbiology Letters. (2005);  243 251-258
  • 61 Hornby D.. Suppressive soils.  Annual Review of Phytopathology. (1983);  21 65-85
  • 62 Hornby D.. Take-All of Cereals: A Regional Perspective. Wallingford, UK; CAB International (1998): 384
  • 63 Huang Z., Bonsall R. F., Mavrodi D. V., Weller D. M., Thomashow L. S.. Transformation of Pseudomonas fluorescens with genes for biosynthesis of phenazine-1-carboxylic acid improves biocontrol of rhizoctonia root rot and in situ antibiotic production.  FEMS Microbiology Ecology. (2004);  49 243-251
  • 64 Iavicoli A., Boutet E., Buchala A., Métraux J. P.. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0.  Molecular Plant-Microbe Interactions. (2003);  16 851-858
  • 65 Isnansetyo A., Cui L., Hiramatsu K., Kamei Y.. Antibacterial activity of 2,4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga, against vancomycin-resistant Staphylococcus aureus.  International Journal of Antimicrobial Agents. (2003);  22 545-547
  • 66 Johnson K. B.. Dose-response relationships and inundative biological control.  Phytopathology. (1994);  84 780-784
  • 67 Johnson K. B., DiLeone J. A.. Effect of antibiosis on antagonist dose-plant disease response relationships for the biological control of crown gall of tomato and cherry.  Phytopathology. (1999);  89 974-980
  • 68 Kamei Y., Isnansetyo A.. Lysis of methicillin-resistant Staphylococcus aureus by 2,4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga.  International Journal of Antimicrobial Agents. (2003);  21 71-74
  • 69 Kay E., Dubuis C., Haas D.. Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0.  Proceedings of the National Academy of Sciences of the USA. (2005);  102 17136-17141
  • 70 Keel C., Schnider U., Maurhofer M., Voisard C., Burger D., Haas D., Défago G.. Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol.  Molecular Plant-Microbe Interactions. (1992);  5 4-13
  • 71 Keel C., Weller D. M., Natsch A., Defago G., Cook R. J., Thomashow L. S.. Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations.  Applied and Environmental Microbiology. (1996);  62 552-563
  • 72 Kempf H.-J., Bauer P. H., Schroth M. N.. Herbicolin A associated with crown and roots of wheat after seed treatment with Erwinia herbicola B247.  Phytopathology. (1993);  83 213-216
  • 73 Kerry B. R.. Fungal parasites of cyst nematodes.  Agriculture, Ecosystems and Environment. (1988);  24 293-295
  • 74 Kim D.-S., Cook R. J., Weller D. M.. Bacillus sp. L324-92 for biological control of three root diseases of wheat grown with reduced tillage.  Phytopathology. (1997);  87 551-558
  • 75 King E. O., Ward M. K., Raney D. E.. Two simple media for the demonstration of pyocianin and fluorescein.  Journal of Laboratory and Clinical Medicine. (1954);  44 301-307
  • 76 Kluepfel D. A.. The behavior and tracking of bacteria in the rhizosphere.  Annual Review of Phytopathology. (1993);  31 441-472
  • 77 Kraus J., Loper J. E.. Characterization of a genomic region required for production of the antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5.  Applied and Environmental Microbiology. (1995);  61 849-854
  • 78 Landa B. B., de Werd H. A. E., McSpadden-Gardener B. B., Weller D. M.. Comparison of three methods for monitoring populations of different genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens in the rhizosphere.  Phytopathology. (2002 a);  92 129-137
  • 79 Landa B. B., Mavrodi D. V., Thomashow L. S., Weller D. M.. Interactions between strains of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens in the rhizosphere of wheat.  Phytopathology. (2003);  93 982-994
  • 80 Landa B. B., Mavrodi O. V., Raaijmakers J. M., McSpadden-Gardener B. B., Thomashow L. S., Weller D. M.. Differential ability of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains to colonize the roots of pea plants.  Applied and Environmental Microbiology. (2002 b);  68 3226-3237
  • 81 Landa B. B., Mavrodi O. V., Schroeder K. L., Allende-Molar R., Weller D. M.. Enrichment and genotypic diversity of phlD-containing fluorescent Pseudomonas spp. in two soils after a century of wheat and flax monoculture.  FEMS Microbiology Ecology. (2006);  55 351-368
  • 82 Landa B. B., Navas-Cortés J. A., Hervás-Vargas A., Jiménez-Díaz R. M.. Influence of rhizosphere bacteria, temperature, and Fusarium oxysporum f. sp. ciceris inoculum density on suppression of Fusarium wilt of chickpea.  Phytopathology. (2001);  91 807-816
  • 83 Landa B. B., Navas-Cortés J. A., Jiménez-Díaz R. M.. Influence of temperature on plant-rhizobacteria interactions related to biocontrol potential for suppression of fusarium wilt of chickpea.  Plant Pathology. (2004);  53 341-352
  • 84 Laursen J. B., Nielsen J.. Phenazine natural products: biosynthesis, synthetic analogues, and biological activity.  Chemical Reviews. (2004);  104 1663-1685
  • 85 Laville J., Voisard C., Keel C., Maurhofer M., Défago G., Haas D.. Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco.  Proceedings of the National Academy of Sciences of the USA. (1992);  89 1562-1566
  • 86 Lee E.-T., Kim S.-D.. An antifungal substance, 2,4-diacetylphloroglucinol, produced from antagonistic bacterium Pseudomonas fluorescens 2112 against Phytophthora capsici. Kor. J.  Applied Microbiology and Biotechnology. (2001);  29 37-42
  • 87 Lemanceau P., Corberand T., Gardan L., Latour X., Laguerre G., Boeufgras J., Alabouvette C.. Effect of two plant species, flax (Linum usitatissinum L.) and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne populations of fluorescent pseudomonads.  Applied and Environmental Microbiology. (1995);  61 1004-1012
  • 88 Liu W. T., Marsh T. L., Cheng H., Forney L. J.. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA.  Applied and Environmental Microbiology. (1997);  63 4516-4522
  • 89 Lorang J. M., Anderson N. A., Laver F. I., Wildung D. K.. Disease decline in a Minnesota potato scab plot.  American Potato Journal. (1989);  66 531
  • 90 Lutz M. P., Wenger S., Maurhofer M., Défago G., Duffy B.. Signaling between bacterial and fungal biocontrol agents in a strain mixture.  FEMS Microbiology Ecology. (2004);  48 447-455
  • 91 Mahaffee W. F., Bauske E. M., van Vuurde J. W. L., van der Wolf M., van den Brink M., Kloepper J. W.. Comparative analysis of antibiotic resistance, immunofluorescent colony staining, and a transgenic marker (bioluminescence) for monitoring the environmental fate of a rhizobacterium.  Applied and Environmental Microbiology. (1997);  63 1617-1622
  • 92 Marschner P., Crowley D., Yang C. H.. Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type.  Plant and Soil. (2004);  261 199-208
  • 93 Maurhofer M., Baehler E., Notz R., Martinez V., Keel C.. Cross talk between 2,4-diacetylophloroglucinol-producing biocontrol pseudomonads on wheat roots.  Applied and Environmental Microbiology. (2004);  70 1990-1998
  • 94 Mavingui P., Laguerre G., Berge O.. Genetic and phenotypic diversity of Bacillus polymyxa in soil and in the wheat rhizosphere.  Applied and Environmental Microbiology. (1992);  58 1894-1903
  • 95 Mavrodi D. V., Blankenfeldt W., Thomashow L. S.. Phenazine compounds in fluorescent Pseudomonas spp.: biosynthesis and regulation.  Annual Review of Phytopathology. (2006);  44 417-445
  • 96 Mavrodi D. V., Bleimling N., Thomashow L. S., Blankenfeldt W.. The purification, crystallisation and preliminary structural characterisation of PhzF, a key enzyme in the phenazine biosynthesis pathway from Pseudomonas fluorescens 2-79.  Acta Crystallographica. (2004);  D60 184-186
  • 97 Mavrodi D. V., Bonsall R. F., Delaney S. M., Soule M. J., Phillips G., Thomashow L. S.. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PA01.  Journal of Bacteriology. (2001 a);  183 6454-6465
  • 98 Mavrodi D. V., Ksenzenko V. N., Bonsall R. F., Cook R. J., Boronin A. M., Thomashow L. S.. A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79.  Journal of Bacteriology. (1998);  180 2541-2548
  • 99 Mavrodi D. V., Mavrodi O. V., McSpadden-Gardener B. B., Landa B. B., Weller D. M., Thomashow L. S.. Identification of differences in genome content among phlD-positive Pseudomonas fluorescens strains by using PCR-based subtractive hybridization.  Applied and Environmental Microbiology. (2002);  68 5170-5176
  • 100 Mavrodi O. V., McSpadden-Gardener B. B., Mavrodi D. V., Bonsall R. F., Weller D. M., Thomashow L. S.. Genetic diversity of phlD from 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp.  Phytopathology. (2001 b);  91 35-43
  • 101 Mazzola M.. Assessment and management of soil microbial community structure for disease suppression.  Annual Review of Phytopathology. (2004);  42 35-59
  • 102 Mazzola M., Cook R. J., Thomashow L. S., Weller D. M., Pierson III. L. S.. Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats.  Applied and Environmental Microbiology. (1992);  58 2616-2624
  • 103 Mazzola M., Fujimoto K., Thomashow L. S., Cook R. J.. Variation in sensitivity of Gaeumannomyces graminis to antibiotics produced by fluorescent Pseudomonas spp. and effect on biological control of take-all of wheat.  Applied and Environmental Microbiology. (1995);  61 2554-2559
  • 183 Mazzola M., Funnell D. L., Raaijmakers J. M.. Wheat cultivar-specific selection of 2,4-diacetylphloroglucinol-producing Pseudomonas species from resident soil populations.  Microbial Ecology. (2004);  48 338-348
  • 104 Mazzola M., Gu Y. H.. Impact of wheat cultivation on microbial communities from replant soils and apple growth in greenhouse trials.  Phytopathology. (2000);  90 114-119
  • 105 McDonald M., Mavrodi D. V., Tomashow L. S., Floss H. G.. Phenazine biosynthesis in Pseudomonas fluorescens: branchpoint from the primary shikimate biosynthetic pathway and role of phenazine-1,6-dicarboxylic acid.  Journal of the American Chemical Society. (2001);  123 9459-9460
  • 106 McSpadden Gardener B. B., Mavrodi D. V., Thomashow L. S., Weller D. M.. A rapid polymerase chain reaction-based assay characterizing rhizosphere populations of 2,4-diacetylphloroglucinol-producing bacteria.  Phytopathology. (2001);  91 44-54
  • 107 McSpadden Gardener B. B., Schroeder K. L., Kalloger S. E., Raaijmakers J. M., Thomashow L. S., Weller D. M.. Genotypic and phenotypic diversity of phlD-containing Pseudomonas strains isolated from the rhizosphere of wheat.  Applied and Environmental Microbiology. (2000);  66 1939-1946
  • 108 McSpadden Gardener B. B., Weller D. M.. Changes in populations of rhizosphere bacteria associated with take-all disease of wheat.  Applied and Environmental Microbiology. (2001);  67 4414-4425
  • 109 Menzies J. D.. Occurrence and transfer of a biological factor in soil that suppresses potato scab.  Phytopathology. (1959);  49 648-652
  • 110 Miller H. J., Henken G., van Veen J. A.. Variation and composition of bacterial populations in the rhizosphere of maize, wheat, and grass cultivars.  Canadian Journal of Microbiology. (1989);  35 656-660
  • 111 Morgan J. A. W., Whipps J. M.. Methodological approaches to the study of rhizosphere carbon flow and microbial population dynamics. Pinton, R., Varanini, Z., and Nannipieri, P., eds. The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface. New York; Marcel Dekker (2001): 373-409
  • 112 Muyzer G., Smalla K.. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology.  Antonie van Leeuwenhoek. (1998);  73 127-141
  • 113 Notz R., Maurhofer M., Dubach H., Haas D., Défago G.. Fusaric acid-producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat.  Applied and Environmental Microbiology. (2002);  68 2229-2235
  • 114 Nowak-Thompson B., Chaney N., Wing J. S., Gould S. J., Loper J. E.. Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5.  Journal of Bacteriology. (1999);  181 2166-2174
  • 115 Ownley B. H., Duffy B. K., Weller D. M.. Identification and manipulation of soil properties to improve the biological control performance of phenazine-producing Pseudomonas fluorescens. .  Applied and Environmental Microbiology. (2003);  69 3333-3343
  • 116 Ownley B. H., Weller D. M., Thomashow L. S.. Influence of in situ and in vitro pH on suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79.  Phytopathology. (1992);  82 178-184
  • 117 Paulsen I. T., Press C., Ravel J., Kobayashi D. Y., Myers G. S. A., Mavrodi D. V., DeBoy R. T., Seshadri R., Ren Q., Madupu R., Dodson R. J., Durkin A. S., Brinkac L. M., Daugherty S. C., Sullivan S. A., Rosovitz M. J., Gwinn M. L., Zhou L., Nelson W. C., Weidman J., Watkins K., Tran K., Khouri H., Pierson E. A., Pierson III. L. S., Thomashow L. S., Loper J. E.. Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5: insights into the biological control of plant disease.  Nature Biotechnology. (2005);  23 873-878
  • 118 Pechy-Tarr M., Bottiglieri M., Mathys S., Lejbolle K. B., Schnider-Keel U., Maurhofer M., Keel C.. RpoN (sigma54) controls production of antifungal compounds and biocontrol activity in Pseudomonas fluorescens CHA0.  Molecular Plant-Microbe Interactions. (2005);  18 260-272
  • 119 Pfender W. F., Kraus J., Loper J. E.. A genomic region from Pseudomonas fluorescens Pf-5 required for pyrrolnitrin production and inhibition of Pyrenophora tritici-repens in wheat straw.  Phytopathology. (1993);  83 1223-1228
  • 120 Picard C., Bosco M.. Genetic diversity of phlD gene from 2,4-diacetylphloroglucinol-producing Pseudomonas spp. strains from the maize rhizosphere.  FEMS Microbiology Letters. (2003);  219 167-172
  • 121 Picard C., Di Cello F., Ventura M., Fani R., Guckert A.. Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth.  Applied and Environmental Microbiology. (2000);  66 948-955
  • 122 Pierson E. A., Weller D. M.. Using rhizobacteria mixtures to improve the consistency and effectiveness of biological control of take-all of wheat.  Phytopathology. (1994);  84 940-947
  • 123 Pierson III. L. S., Gaffney T., Lam S., Gong F.. Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium Pseudomonas aureofaciens 30-84.  FEMS Microbiology Letters. (1995);  134 299-307
  • 125 Pierson III. L. S., Thomashow L. S.. Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30-84.  Molecular Plant-Microbe Interactions. (1992);  5 330-339
  • 126 Price-Whelan A., Dietrich L. E., Newman D. K.. Rethinking “secondary” metabolism: physiological roles for phenazine antibiotics.  Nature Chemical Biology. (2006);  2 71-78
  • 127 Raaijmakers J. M., Bonsall R. F., Weller D. M.. Effect of population density of Pseudomonas fluorescens on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat.  Phytopathology. (1999);  89 470-475
  • 128 Raaijmakers J. M., van der Sluis I., Koster M., Bakker P. A. H. M., Weisbeek P. J., Schippers B.. Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp.  Canadian Journal of Microbiology. (1995);  41 126-135
  • 129 Raaijmakers J. M., de Bruijn I., de Kock M. J. D.. Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation.  Molecular Plant-Microbe Interactions. (2006);  19 699-710
  • 130 Raaijmakers J. M., Vlami M., de Souza J. T.. Antibiotic production by bacterial biocontrol agents.  Antonie van Leeuwenhoek. (2002);  81 537-547
  • 131 Raaijmakers J. M., Weller D. M.. Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils.  Molecular Plant-Microbe Interactions. (1998);  11 144-152
  • 132 Raaijmakers J. M., Weller D. M.. Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1-96.  Applied and Environmental Microbiology. (2001);  67 2545-2554
  • 133 Raaijmakers J. M., Weller D. M., Thomashow L. S.. Frequency of antibiotic-producing Pseudomonas spp. in natural environments.  Applied and Environmental Microbiology. (1997);  63 881-887
  • 134 Ramette A., Moënne-Locoz Y., Défago G.. Polymorphism of the polyketide synthase gene phlD in biocontrol fluorescent pseudomonads producing 2,4-diacetylphloroglucoinol and comparison of PhlD with plant polyketide synthases.  Molecular Plant-Microbe Interactions. (2001);  14 639-652
  • 135 Ramette A., Moënne-Locoz Y., Défago G.. Prevalence of fluorescent pseudomonads producing antifungal phloroglucinols and/or hydrogen cyanide in soils naturally suppressive or conducive to tobacco black root rot.  FEMS Microbiology Ecology. (2003);  44 35-43
  • 136 Roget D. K.. Decline in root rot (Rhizoctonia solani AG‐8) in wheat in a tillage and rotation experiment at Avon, South Australia.  Australian Journal of Experimental Agriculture. (1995);  35 1009-1013
  • 137 Sarniguet A., Kraus J., Henkels M. D., Muehlchen A. M., Loper J. E.. The sigma factor σs affects antibiotic production in Pseudomonas fluorescens Pf-5.  Proceedings of the National Academy of Sciences of the USA. (1997);  92 12255-12259
  • 138 Sarniguet A., Lucas P.. Evaluation of populations of fluorescent pseudomonads related to decline of take-all patch on turfgrass.  Plant and Soil. (1992);  145 11-15
  • 139 Schnider U., Keel C., Blumer C., Troxler J., Défago G., Haas D.. Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHA0 enhances antibiotic production and improves biocontrol abilities.  Journal of Bacteriology. (1995);  177 5387-5392
  • 140 Schnider-Keel U., Seematter A., Maurhofer M., Blumer C., Duffy B., Gigot-Bonnefoy C., Reimmann C., Notz R., Défago G., Haas D., Keel C.. Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin.  Journal of Bacteriology. (2000);  182 1215-1225
  • 141 Schroeder K., Raaijmakers J. M., Kalloger S. E., Mavrodi D. V., Thomashow L. S., Weller D. M.. Distribution of 2,4-diacetylphloroglucinol-producing Pseudomonas spp. with extended monoculture.  Phytopathology. (1998);  88 (Suppl.) S80
  • 142 Shanahan P., O'Sullivan D. J., Simpson P., Glennon J. D., O'Gara F.. Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production.  Applied and Environmental Microbiology. (1992);  58 353-358
  • 143 Shipton P. J.. Take-all in spring sown cereals under continuous cultivation; disease progress and decline in relation to crop succession and nitrogen.  Annals of Applied Biology. (1972);  71 33-46
  • 144 Shipton P. J.. Take-all decline during cereal monoculture. Bruehl, G. W., ed. Biology and Control of Soil-Borne Plant Pathogens. St. Paul, Minnesota; APS Press (1975): 137-144
  • 145 Shipton P. J., Cook R. J., Sitton J. W.. Occurrence and transfer of a biological factor in soil that suppresses take-all of wheat in eastern Washington.  Phytopathology. (1973);  63 511-517
  • 146 Simon A., Ridge E. H.. The use of ampicillin in a simplified selective medium for the isolation of fluorescent pseudomonads.  Journal of Applied Bacteriology. (1974);  37 459-460
  • 147 Simon A., Sivasithamparam V.. Pathogen-suppression: a case study in biological suppression of Gaeumannomyces graminis var. tritici in soil.  Soil Biology and Biochemistry. (1989);  20 263-264
  • 148 Smiley R. W.. Wheat-rhizoplane pseudomonads as antagonists of Gaeumannomyces graminis.  Soil Biology and Biochemistry. (1979);  11 371-376
  • 149 Smirnov V. V., Kiprianova E. A.. Bacteria of Pseudomonas Genus. Kiev, Ukraine; Naukova Dumka (1990)
  • 150 Smith K. P., Goodman R. M.. Host variation for interactions with beneficial plant-associated microbes.  Annual Review of Phytopathology. (1999);  37 473-491
  • 151 Smith K. P., Handelsman J., Goodman R. M.. Genetic basis in plants for interactions with disease-suppressive bacteria.  Proceedings of the National Academy of Sciences of the USA. (1999);  96 4786-4790
  • 152 Stutz E. W., Défago G., Kern H.. Naturally occurring fluorescent pseudomonads involved in suppression of black root rot of tobacco.  Phytopathology. (1986);  76 181-185
  • 153 Thomashow L. S., Bonsall R. F., Weller D. M.. Antibiotic production by soil and rhizosphere microbes in situ, . Hurst, C. J., Crawford, R. L., Knudsen, G. R., McInerney, M. J., and Stetzenbach, L. D., eds. Manual of Environmental Microbiology, 2nd ed. Washington, D.C.; ASM Press (2002): 636-647
  • 154 Thomashow L. S., Weller D. M.. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici.  Journal of Bacteriology. (1988);  170 3499-3508
  • 155 Thomashow L. S., Weller D. M.. Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. Stacey, G. and Keen, N., eds. Plant-Microbe Interactions, Vol. 1. New York; Chapman and Hall Ltd. (1995): 187-235
  • 156 Thomashow L. S., Weller D. M., Bonsall R. F., Pierson III. L. S.. Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat.  Applied and Environmental Microbiology. (1990);  56 908-912
  • 157 Turner J. M., Messenger A. J.. Occurrence, biochemistry and physiology of phenazine pigment production.  Advances in Microbial Physiology. (1986);  27 211-275
  • 158 Validov S., Mavrodi O., De La Fuente L., Boronin A., Weller D., Thomashow L., Mavrodi D.. Antagonistic activity among 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp.  FEMS Microbiology Letters. (2005);  242 249-256
  • 159 van Loon L. C., Bakker P. A. H. M.. Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. Siddiqui, Z. A., ed. PGPR: Biocontrol and Biofertilization. Dordrecht, The Netherlands; Springer (2005): 39-66
  • 160 van Loon L. C., Bakker P. A. H. M., Pieterse C. M. J.. Systemic resistance induced by rhizosphere bacteria.  Annual Review of Phytopathology. (1998);  36 453-483
  • 161 Vincent M. N., Harrison L. A., Brackin J. M., Kovacevich P. A., Mukerji P., Weller D. M., Cook R. J.. Suppression of take-all of wheat by seed treatment with fluorescent pseudomonads.  Phytopathology. (1991);  73 463-469
  • 162 Wang C., Ramette A., Punjasamarnwong P., Zala M., Natsch A., Moënne-Loccoz Y., Défago G.. Cosmopolitan distribution of phlD-containing dicotyledonous crop-associated biocontrol pseudomonads of world wide origin.  FEMS Microbiology Ecology. (2001);  37 105-116
  • 163 Weller D. M.. Colonization of wheat roots by a fluorescent pseudomonad suppressive to take-all.  Phytopathology. (1983);  73 1548-1553
  • 164 Weller D. M.. Biological control of soilborne plant pathogens in the rhizosphere with bacteria.  Annual Review of Phytopathology. (1988);  26 379-417
  • 165 Weller D. M., Howie W. J., Cook R. J.. Relationship between in vitro inhibition of Gaeumannomyces graminis var. tritici and suppression of take-all of wheat by fluorescent pseudomonads.  Phytopathology. (1988);  78 1094-1100
  • 166 Weller D. M., van Pelt J. A., Mavrodi D. V., Pieterse C. M. J., Bakker P. A. H. M., van Loon L. C.. Induced systemic resistance (ISR) in Arabidopsis against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol (DAPG)-producing Pseudomonas fluorescens.  Phytopathology. (2004);  94 S108
  • 167 Weller D. M., Raaijmakers J. M., McSpadden-Gardener B. B., Thomashow L. S.. Microbial populations responsible for specific soil suppressiveness to plant pathogens.  Annual Review of Phytopathology. (2002);  40 309-348
  • 168 Weller D. M., Thomashow L. S.. Current challenges in introducing beneficial microorganisms into the rhizosphere. O'Gara, F., Dowling, D. N., and Boesten, B., eds. Molecular Ecology of Rhizosphere Microorganisms. Weinheim; VCH (1994): 1-18
  • 169 Weller D. M., Thomashow L. S., Raaijmakers J. M.. The rhizosphere ecology of antibiotic-producing pseudomonads and their role in take-all decline. Ogoshi, A., Kobayashi, K., Homma, Y., Kodama, F., Kondo, N., and Akino, S., eds. Plant Growth-Promoting Rhizobacteria - Present Status and Future Prospects. Sapporo; Nakanishi Printing (1997): 58-64
  • 170 Weller D. M., Zhang B.-X., Cook R.J.. Application of a rapid screening test for selection of bacteria suppressive to take-all of wheat.  Plant Disease. (1985);  69 710-713
  • 171 Westphal A., Becker J. O.. Biological supression and natural population decline of Heterodera sachachtii in a California field.  Phytopathology. (1999);  89 434-440
  • 172 Westphal A., Becker J. O.. Transfer of biological soil suppressiveness against Heterodera schachtii.  Phytopathology. (2000);  90 401-406
  • 173 Westphal A., Becker J. O.. Components of soil suppressiveness against Heterodera schachtii.  Soil Biology and Biochemistry. (2001);  33 9-16
  • 174 Whipps J. M.. Developments in the biological control of soilborne plant pathogens.  Advances in Botanical Research. (1997);  26 1-134
  • 175 Whipps J. M.. Microbial interactions and biocontrol in the rhizosphere.  Journal of Experimental Botany. (2001);  52 487-511
  • 176 Wieland G., Neumann R., Backhaus H.. Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development.  Applied and Environmental Microbiology. (2001);  67 5849-5854
  • 177 Wiseman B. M., Neate S. M., Keller K. O., Smith S. E.. Suppression of Rhizoctonia solani anastomosis group 8 in Australia and its biological nature.  Soil Biology and Biochemistry. (1996);  28 727-732
  • 178 Whistler C. A., Corbell N. A., Sarniguet A., Ream W., Loper J. E.. The two-component regulators GacS and GacA influence accumulation of the stationary-phase sigma factor sigma(S) and the stress response in Pseudomonas fluorescens Pf-5.  Journal of Bacteriology. (1998);  180 6635-6641
  • 179 Whistler C. A., Stockwell V. O., Loper J. E.. Lon protease influences antibiotic production and UV tolerance of Pseudomonas fluorescens Pf-5.  Applied and Environmental Microbiology. (2000);  66 2718-2725
  • 180 Wilson M., Lindow S. E.. Ecological similarity and coexistance of epiphytic ice-nucleating (Ice+) Pseudomonas syringae strains and a non-ice-nucleating (Ice-) biological control agent.  Applied and Environmental Microbiology. (1994);  60 3128-3137
  • 181 Yin B., Valinsky L., Gao X., Becker J. O., Borneman J.. Bacterial rRNA genes associated with soil suppressiveness against the plant-parasitic nematode Heterodera schachtii.  Applied and Environmental Microbiology. (2003 a);  69 1573-1580
  • 182 Yin B., Valinsky L., Gao X., Becker J. O., Borneman J.. Identification of fungal rDNA associated with soil suppressiveness against Heterodera schachtii using oligonucleotide fingerprinting.  Phtopathology. (2003 b);  93 1006-1013

D. M. Weller

USDA‐ARS Root Disease and Biological Control Research Unit
Washington State University

P.O. Box 646430

367 Johnson Hall

Pullman, WA 99164-6430

USA

Email: wellerd@wsu.edu

Review Editor: J. Raven

    >