Anästhesiol Intensivmed Notfallmed Schmerzther 2006; 41(3): 140-149
DOI: 10.1055/s-2006-925109
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Kohlenmonoxid: toxisches Molekül mit antiinflammatorischen und zytoprotektiven Eigenschaften

Carbon Monoxide: Toxic Molecule with Antiinflammatory and Cytoprotective PropertiesP.  Schober1 , A.  Koch1 , K.  Zacharowski1 , S.  A.  Loer1
  • 1Klinik für Anästhesiologie, Universitätsklinikum Düsseldorf
Further Information

Publication History

Publication Date:
23 March 2006 (online)

Zusammenfassung

Kohlenmonoxid entsteht bei inkompletter Verbrennung organischer Materie, wird über die Lungen in den Kreislauf aufgenommen und verdrängt dort Sauerstoff aus der Hämoglobinbindung. Dosisabhängig treten Intoxikationserscheinungen wie Kopfschmerzen, Schwindelgefühl, Übelkeit, Krampfanfälle und Koma auf. Kohlenmonoxid wird aber auch endogen im Rahmen des Hämabbaus gebildet, eine Reaktion, die durch die Hämoxygenase katalysiert wird. Das Isoenzym Hämoxygenase-1 wird durch oxidativen Stress induziert und vermittelt zytoprotektive Mechanismen, die in erster Linie dem gebildeten Kohlenmonoxid zugeschrieben werden. Exogen zugeführtes Kohlenmonoxid zeigte in tierexperimentellen Studien ebenfalls protektive Wirkungen. Neben seinen toxischen Eigenschaften sind daher mittlerweile auch potenziell antiinflammatorische und zytoprotektive Wirkungen von Kohlenmonoxid in den Mittelpunkt des wissenschaftlichen Interesses gerückt.

Abstract

Carbon monoxide arises during incomplete combustion of organic material, is incorporated into the circulation via the lungs and displaces oxygen from hemoglobin. Consecutively, symptoms of intoxication such as headache, vertigo, nausea, seizures and coma may result in a dose dependent fashion. Carbon monoxide is however also generated endogenously during heme degradation catalysed by heme oxgenase enzymes. The isoform hemeoxygenase-1 is inducible by oxidative stress and may mediate cytoprotection mainly attributable to endogenously produced carbon monoxide. Exogenous applied carbon monoxide has also been shown to confer protection in experimental studies. Meanwhile, in addition to the toxicological properties, antiinflammatory and cytoprotective effects of carbon monoxide have moved into the focus of scientific interest.

Literatur

  • 1 Miyakawa S, Yamanashi H, Kobayashi K, Cleaves H J, Miller S L. Prebiotic synthesis from CO atmospheres: implications for the origins of life.  Proc Natl Acad Sci USA. 2002;  99 14 628-14 631
  • 2 Von Burg R. Toxicology Update. Carbon monoxide.  J Appl Toxicol. 1999;  19 379-386
  • 3 Weaver L K. Carbon monoxide poisoning.  Crit Care Clin. 1999;  15 297-317
  • 4 Ryter S W, Otterbein L E. Carbon monoxide in biology and medicine.  Bioessays. 2004;  26 270-280
  • 5 Tenhunen R, Marver H S, Schmid R. Microsomal heme oxygenase. Characterization of the enzyme.  J Biol Chem. 1969;  244 6388-6394
  • 6 Tenhunen R, Marver H S, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase.  Proc Natl Acad Sci U S A. 1968;  61 748-755
  • 7 McCoubrey W K Jr, Huang T J, Maines M D. Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3.  Eur J Biochem. 1997;  247 725-732
  • 8 Otterbein L E, Choi A M. Heme oxygenase: colors of defense against cellular stress.  Am J Physiol Lung Cell Mol Physiol. 2000;  279 L1029-L1037
  • 9 Dulak J, Jozkowicz A. Carbon monoxide - a „new” gaseous modulator of gene expression.  Acta Biochim Pol. 2003;  50 31-47
  • 10 Ryter S W, Morse D, Choi A M. Carbon monoxide: to boldly go where NO has gone before.  Sci STKE. 2004;  2004 RE6
  • 11 Morse D, Choi A M. Heme Oxygenase-1: From Bench to Bedside.  Am J Respir Crit Care Med. 2005;  172 660-670
  • 12 Deshane J, Wright M, Agarwal A. Heme oxygenase-1 expression in disease states.  Acta Biochim Pol. 2005;  52 273-284
  • 13 Furchgott R F, Jothianandan D. Endothelium-dependent and -independent vasodilation involving cyclic GMP: relaxation induced by nitric oxide, carbon monoxide and light.  Blood Vessels. 1991;  28 52-61
  • 14 Verma A, Hirsch D J, Glatt C E, Ronnett G V, Snyder S H. Carbon monoxide: a putative neural messenger.  Science. 1993;  259 381-384
  • 15 Otterbein L E. Carbon monoxide: innovative anti-inflammatory properties of an age-old gas molecule.  Antioxid Redox Signal. 2002;  4 309-319
  • 16 Ryter S W, Otterbein L E, Morse D, Choi A M. Heme oxygenase/carbon monoxide signaling pathways: regulation and functional significance.  Mol Cell Biochem. 2002;  234/235 249-263
  • 17 Slebos D J, Ryter S W, Choi A M. Heme oxygenase-1 and carbon monoxide in pulmonary medicine.  Respir Res. 2003;  4 7
  • 18 Thiemermann C. Inhaled CO: deadly gas or novel therapeutic?.  Nat Med. 2001;  7 534-535
  • 19 Junge C, Seiler W, Bock R, Greese K D, Radler F. Über die CO-Produktion von Mikroorganismen.  Naturwissenschaften. 1971;  58 362-363
  • 20 Troxler R F, Dokos J M. Formation of Carbon-Monoxide and Bile Pigment in Red and Blue-Green-Algae.  Plant Physiology. 1973;  51 72-75
  • 21 Hund H K, Breuer J, Lingens F, Huttermann J, Kappl R, Fetzner S. Flavonol 2,4-dioxygenase from Aspergillus niger DSM 821, a type 2 CuII-containing glycoprotein.  Eur J Biochem. 1999;  263 871-878
  • 22 Wilks S S. Carbon monoxide in green plants.  Science. 1959;  129 964-966
  • 23 Levy H. Tropospheric Budgets for Methane, Carbon-Monoxide, and Related Species.  Journal of Geophysical Research. 1973;  78 5325-5332
  • 24 Ehhalt D, Prather M, Dentener F, Derwent R, Dlugokencky E, Holland E, Isaksen I, Kirchhoff V, Matson P, Midgley P, Wang M. Atmospheric Chemistry and Greenhouse Gases. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (Hrsg) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA; Cambridge University Press 2005
  • 25 Bakwin P S, Tans P P, Novelli P C. Carbon-Monoxide Budget in the Northern-Hemisphere.  Geophysical Research Letters. 1994;  21 433-436
  • 26 Novelli P C, Masarie K A, Lang P M. Distributions and recent changes of carbon monoxide in the lower troposphere.  Journal of Geophysical Research-Atmospheres. 1998;  103 19015-19033
  • 27 Khalil M AK, Rasmussen R A. Global Decrease in Atmospheric Carbon-Monoxide Concentration.  Nature. 1994;  370 639-641
  • 28 Bayrisches Landesamt für Umweltschutz .Lufthygienischer Jahresbericht 2003. 20,. 2003
  • 29 Weinstock B, Niki H. Carbon-Monoxide Balance in Nature.  Science. 1972;  176 290-292
  • 30 Bartholomew G W, Alexander M. Microbial metabolism of carbon monoxide in culture and in soil.  Appl Environ Microbiol. 1979;  37 932-937
  • 31 Bidwell R GS, Fraser D E. Carbon-Monoxide Uptake and Metabolism by Leaves.  Can J Bot. 1972;  50 1435
  • 32 Chappelle E. Carbon Monoxide Oxidation by Algae.  Biochimica et Biophysica Acta. 1962;  62 45-62
  • 33 Haldane J. The relation of the action of carbonic oxide to oxygen tension.  J Physiol. 1895;  18 201-217
  • 34 Haldane J. The action of carbonic oxide on man.  J Physiol. 1895;  18 430-462
  • 35 Centers for Disease Control and Prevention . Unintentional non-fire-related carbon monoxide exposures - United States, 2001 - 2003.  MMWR Morb Mortal Wkly Rep. 2005;  54 36-39
  • 36 Statistisches Bundesamt .Todesursachen in Deutschland 2003. Fachserie 12, Reihe 4 2005
  • 37 Coburn R F. The carbon monoxide body stores.  Ann N Y Acad Sci. 1970;  174 11-22
  • 38 Hackney J D, Kaufman G A, Lashier H, Lynn K. Rebreathing estimate of carbon monoxide hemoglobin.  Arch Environ Health. 1962;  5 300-307
  • 39 Dahms T E, Horvath S M, Gray D J. Technique for accurately producing desired carboxyhemoglobin levels during rest and exercise.  J Appl Physiol. 1975;  38 366-368
  • 40 Hampson N B. Pulse oximetry in severe carbon monoxide poisoning.  Chest. 1998;  114 1036-1041
  • 41 Widdop B. Analysis of carbon monoxide.  Ann Clin Biochem. 2002;  39 378-391
  • 42 Myers R A, De Fazio A, Kelly M P. Chronic carbon monoxide exposure: a clinical syndrome detected by neuropsychological tests.  J Clin Psychol. 1998;  54 555-567
  • 43 Hampson N B, Mathieu D, Piantadosi C A, Thom S R, Weaver L K. Carbon monoxide poisoning: interpretation of randomized clinical trials and unresolved treatment issues.  Undersea Hyperb Med. 2001;  28 157-164
  • 44 Weaver L K, Howe S, Hopkins R, Chan K J. Carboxyhemoglobin half-life in carbon monoxide-poisoned patients treated with 100 % oxygen at atmospheric pressure.  Chest. 2000;  117 801-808
  • 45 Juurlink D, Buckley N, Stanbrook M, Isbister G, Bennett M, McGuigan M. Hyperbaric oxygen for carbon monoxide poisoning. Cochrane Database Syst Rev 2005: CD002041
  • 46 Fisher J A, Rucker J, Sommer L Z, Vesely A, Lavine E, Greenwald Y, Volgyesi G, Fedorko L, Iscoe S. Isocapnic hyperpnea accelerates carbon monoxide elimination.  Am J Respir Crit Care Med. 1999;  159 1289-1292
  • 47 Kreck T C, Shade E D, Lamm W J, McKinney S E, Hlastala M P. Isocapnic hyperventilation increases carbon monoxide elimination and oxygen delivery.  Am J Respir Crit Care Med. 2001;  163 458-462
  • 48 Takeuchi A, Vesely A, Rucker J, Sommer L Z, Tesler J, Lavine E, Slutsky A S, Maleck W H, Volgyesi G, Fedorko L, Iscoe S, Fisher J A. A simple „new” method to accelerate clearance of carbon monoxide.  Am J Respir Crit Care Med. 2000;  161 1816-1819
  • 49 Stewart R D. The effect of carbon monoxide on humans.  Annu Rev Pharmacol. 1975;  15 409-423
  • 50 Noguchi M, Yoshida T, Kikuchi G. Identification of the product of heme degradation catalyzed by the heme oxygenase system as biliverdin IX alpha by reversed-phase high-performance liquid chromatography.  J Biochem (Tokyo). 1982;  91 1479-1483
  • 51 Yoshida T, Kikuchi G. Features of the reaction of heme degradation catalyzed by the reconstituted microsomal heme oxygenase system.  J Biol Chem. 1978;  253 4230-4236
  • 52 Yoshida T, Noguchi M, Kikuchi G. Oxygenated form of heme · heme oxygenase complex and requirement for second electron to initiate heme degradation from the oxygenated complex.  J Biol Chem. 1980;  255 4418-4420
  • 53 Yoshida T, Noguchi M, Kikuchi G. The step of carbon monoxide liberation in the sequence of heme degradation catalyzed by the reconstituted microsomal heme oxygenase system.  J Biol Chem. 1982;  257 9345-9348
  • 54 Maines M D, Trakshel G M, Kutty R K. Characterization of two constitutive forms of rat liver microsomal heme oxygenase. Only one molecular species of the enzyme is inducible.  J Biol Chem. 1986;  261 411-419
  • 55 Alam J, Cai J, Smith A. Isolation and characterization of the mouse heme oxygenase-1 gene. Distal 5’ sequences are required for induction by heme or heavy metals.  J Biol Chem. 1994;  269 1001-1009
  • 56 Alam J, Shibahara S, Smith A. Transcriptional activation of the heme oxygenase gene by heme and cadmium in mouse hepatoma cells.  J Biol Chem. 1989;  264 6371-6375
  • 57 Lee P J, Jiang B H, Chin B Y, Iyer N V, Alam J, Semenza G L, Choi A M. Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia.  J Biol Chem. 1997;  272 5375-5381
  • 58 Murphy B J, Laderoute K R, Short S M, Sutherland R M. The identification of heme oxygenase as a major hypoxic stress protein in Chinese hamster ovary cells.  Br J Cancer. 1991;  64 69-73
  • 59 Applegate L A, Luscher P, Tyrrell R M. Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian cells.  Cancer Res. 1991;  51 974-978
  • 60 Camhi S L, Alam J, Otterbein L, Sylvester S L, Choi A M. Induction of heme oxygenase-1 gene expression by lipopolysaccharide is mediated by AP-1 activation.  Am J Respir Cell Mol Biol. 1995;  13 387-398
  • 61 Camhi S L, Alam J, Wiegand G W, Chin B Y, Choi A M. Transcriptional activation of the HO-1 gene by lipopolysaccharide is mediated by 5’ distal enhancers: role of reactive oxygen intermediates and AP-1.  Am J Respir Cell Mol Biol. 1998;  18 226-234
  • 62 Durante W, Peyton K J, Schafer A I. Platelet-derived growth factor stimulates heme oxygenase-1 gene expression and carbon monoxide production in vascular smooth muscle cells.  Arterioscler Thromb Vasc Biol. 1999;  19 2666-2672
  • 63 Gemsa D, Woo C H, Fudenberg H H, Schmid R. Stimulation of heme oxygenase in macrophages and liver by endotoxin.  J Clin Invest. 1974;  53 647-651
  • 64 Kappas A, Drummond G S. Control of heme and cytochrome P-450 metabolism by inorganic metals, organometals and synthetic metalloporphyrins.  Environ Health Perspect. 1984;  57 301-306
  • 65 Keyse S M, Tyrrell R M. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite.  Proc Natl Acad Sci USA. 1989;  86 99-103
  • 66 Keyse S M, Tyrrell R M. Both near ultraviolet radiation and the oxidizing agent hydrogen peroxide induce a 32-kDa stress protein in normal human skin fibroblasts.  J Biol Chem. 1987;  262 14 821-14 825
  • 67 Kurata S, Matsumoto M, Tsuji Y, Nakajima H. Lipopolysaccharide activates transcription of the heme oxygenase gene in mouse M1 cells through oxidative activation of nuclear factor kappa B.  Eur J Biochem. 1996;  239 566-571
  • 68 Kutty R K, Nagineni C N, Kutty G, Hooks J J, Chader G J, Wiggert B. Increased expression of heme oxygenase-1 in human retinal pigment epithelial cells by transforming growth factor-beta.  J Cell Physiol. 1994;  159 371-378
  • 69 Rushworth S A, Chen X L, Mackman N, Ogborne R M, O’Connell M A. Lipopolysaccharide-induced heme oxygenase-1 expression in human monocytic cells is mediated via Nrf2 and protein kinase C.  J Immunol. 2005;  175 4408-4415
  • 70 Taketani S, Kohno H, Yoshinaga T, Tokunaga R. Induction of heme oxygenase in rat hepatoma cells by exposure to heavy metals and hyperthermia.  Biochem Int. 1988;  17 665-672
  • 71 Taketani S, Kohno H, Yoshinaga T, Tokunaga R. The human 32-kDa stress protein induced by exposure to arsenite and cadmium ions is heme oxygenase.  FEBS Lett. 1989;  245 173-176
  • 72 Taketani S, Sato H, Yoshinaga T, Tokunaga R, Ishii T, Bannai S. Induction in mouse peritoneal macrophages of 34 kDa stress protein and heme oxygenase by sulfhydryl-reactive agents.  J Biochem (Tokyo). 1990;  108 28-32
  • 73 Terry C M, Clikeman J A, Hoidal J R, Callahan K S. Effect of tumor necrosis factor-alpha and interleukin-1 alpha on heme oxygenase-1 expression in human endothelial cells.  Am J Physiol. 1998;  274 H883-H891
  • 74 Tsukiji T, Takahashi T, Mizobuchi S, Suzuki T, Hirakawa M, Watanabe S, Akagi R. Gene expression of heme oxygenase-1 during glial activation by lipopolysaccharide.  Res Commun Mol Pathol Pharmacol. 2000;  107 187-196
  • 75 Tüzüner E, Liu L, Shimada M, Yilmaz E, Glanemann M, Settmacher U, Langrehr J M, Jonas S, Neuhaus P, Nussler A K. Heme oxygenase-1 protects human hepatocytes in vitro against warm and cold hypoxia.  J Hepatol. 2004;  41 764-772
  • 76 Marquis J C, Demple B. Complex genetic response of human cells to sublethal levels of pure nitric oxide.  Cancer Res. 1998;  58 3435-3440
  • 77 Hartsfield C L, Alam J, Cook J L, Choi A M. Regulation of heme oxygenase-1 gene expression in vascular smooth muscle cells by nitric oxide.  Am J Physiol. 1997;  273 L980-L988
  • 78 Motterlini R, Foresti R, Intaglietta M, Winslow R M. NO-mediated activation of heme oxygenase: endogenous cytoprotection against oxidative stress to endothelium.  Am J Physiol. 1996;  270 H107-H114
  • 79 Yee E L, Pitt B R, Billiar T R, Kim Y M. Effect of nitric oxide on heme metabolism in pulmonary artery endothelial cells.  Am J Physiol. 1996;  271 L512-L518
  • 80 Durante W, Kroll M H, Christodoulides N, Peyton K J, Schafer A I. Nitric oxide induces heme oxygenase-1 gene expression and carbon monoxide production in vascular smooth muscle cells.  Circ Res. 1997;  80 557-564
  • 81 Takahashi K, Hara E, Suzuki H, Sasano H, Shibahara S. Expression of heme oxygenase isozyme mRNAs in the human brain and induction of heme oxygenase-1 by nitric oxide donors.  J Neurochem. 1996;  67 482-489
  • 82 Maines M D, Ewing J F. Stress response of the rat testis: in situ hydridization and immunohistochemical analysis of heme oxygenase-1 (HSP32) induction by hyperthermia.  Biol Reprod. 1996;  54 1070-1079
  • 83 Ewing J F, Raju V S, Maines M D. Induction of heart heme oxygenase-1 (HSP32) by hyperthermia: possible role in stress-mediated elevation of cyclic 3′:5′-guanosine monophosphate.  J Pharmacol Exp Ther. 1994;  271 408-414
  • 84 Ewing J F, Haber S N, Maines M D. Normal and heat-induced patterns of expression of heme oxygenase-1 (HSP32) in rat brain: hyperthermia causes rapid induction of mRNA and protein.  J Neurochem. 1992;  58 1140-1149
  • 85 Ewing J F, Maines M D. Rapid induction of heme oxygenase 1 mRNA and protein by hyperthermia in rat brain: heme oxygenase 2 is not a heat shock protein.  Proc Natl Acad Sci U S A. 1991;  88 5364-5368
  • 86 Okinaga S, Takahashi K, Takeda K, Yoshizawa M, Fujita H, Sasaki H, Shibahara S. Regulation of human heme oxygenase-1 gene expression under thermal stress.  Blood. 1996;  87 5074-5084
  • 87 Nath K A, Balla G, Vercellotti G M, Balla J, Jacob H S, Levitt M D, Rosenberg M E. Induction of heme oxygenase is a rapid, protective response in rhabdomyolysis in the rat.  J Clin Invest. 1992;  90 267-270
  • 88 Otterbein L, Sylvester S L, Choi A M. Hemoglobin provides protection against lethal endotoxemia in rats: the role of heme oxygenase-1.  Am J Respir Cell Mol Biol. 1995;  13 595-601
  • 89 Minamino T, Christou H, Hsieh C M, Liu Y, Dhawan V, Abraham N G, Perrella M A, Mitsialis S A, Kourembanas S. Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia.  Proc Natl Acad Sci USA. 2001;  98 8798-8803
  • 90 Suttner D M, Sridhar K, Lee C S, Tomura T, Hansen T N, Dennery P A. Protective effects of transient HO-1 overexpression on susceptibility to oxygen toxicity in lung cells.  Am J Physiol. 1999;  276 L443-L451
  • 91 Chen K, Gunter K, Maines M D. Neurons overexpressing heme oxygenase-1 resist oxidative stress-mediated cell death.  J Neurochem. 2000;  75 304-313
  • 92 Abraham N G, Lavrovsky Y, Schwartzman M L, Stoltz R A, Levere R D, Gerritsen M E, Shibahara S, Kappas A. Transfection of the human heme oxygenase gene into rabbit coronary microvessel endothelial cells: protective effect against heme and hemoglobin toxicity.  Proc Natl Acad Sci U S A. 1995;  92 6798-6802
  • 93 Poss K D, Tonegawa S. Reduced stress defense in heme oxygenase 1-deficient cells.  Proc Natl Acad Sci U S A. 1997;  94 10 925-10 930
  • 94 Suttner D M, Dennery P A. Reversal of HO-1 related cytoprotection with increased expression is due to reactive iron.  FASEB J. 1999;  13 1800-1809
  • 95 Kvam E, Hejmadi V, Ryter S, Pourzand C, Tyrrell R M. Heme oxygenase activity causes transient hypersensitivity to oxidative ultraviolet A radiation that depends on release of iron from heme.  Free Radic Biol Med. 2000;  28 1191-1196
  • 96 Poole B, Wang W, Chen Y C, Zolty E, Falk S, Mitra A, Schrier R. The Role of Heme Oxygenase-1 in Endotoxemic Acute Renal Failure.  Am J Physiol Renal Physiol. 2005;  289 F1382-F1385
  • 97 Paul G, Bataille F, Obermeier F, Bock J, Klebl F, Strauch U, Lochbaum D, Rummele P, Farkas S, Scholmerich J, Fleck M, Rogler G, Herfarth H. Analysis of intestinal haem-oxygenase-1 (HO-1) in clinical and experimental colitis.  Clin Exp Immunol. 2005;  140 547-555
  • 98 Geuken E, Buis C I, Visser D S, Blokzijl H, Moshage H, Nemes B, Leuvenink H G, de Jong K P, Peeters P M, Slooff M J, Porte R J. Expression of heme oxygenase-1 in human livers before transplantation correlates with graft injury and function after transplantation.  Am J Transplant. 2005;  5 1875-1885
  • 99 Eisenstein R S, Garcia-Mayol D, Pettingell W, Munro H N. Regulation of ferritin and heme oxygenase synthesis in rat fibroblasts by different forms of iron.  Proc Natl Acad Sci U S A. 1991;  88 688-692
  • 100 Balla G, Jacob H S, Balla J, Rosenberg M, Nath K, Apple F, Eaton J W, Vercellotti G M. Ferritin: a cytoprotective antioxidant strategem of endothelium.  J Biol Chem. 1992;  267 18 148-18 153
  • 101 Ferris C D, Jaffrey S R, Sawa A, Takahashi M, Brady S D, Barrow R K, Tysoe S A, Wolosker H, Baranano D E, Dore S, Poss K D, Snyder S H. Haem oxygenase-1 prevents cell death by regulating cellular iron.  Nat Cell Biol. 1999;  1 152-157
  • 102 Baranano D E, Wolosker H, Bae B I, Barrow R K, Snyder S H, Ferris C D. A mammalian iron ATPase induced by iron.  J Biol Chem. 2000;  275 15 166-15 173
  • 103 Tenhunen R, Ross M E, Marver H S, Schmid R. Reduced nicotinamide-adenine dinucleotide phosphate dependent biliverdin reductase: partial purification and characterization.  Biochemistry. 1970;  9 298-303
  • 104 Gopinathan V, Miller N J, Milner A D, Rice-Evans C A. Bilirubin and ascorbate antioxidant activity in neonatal plasma.  FEBS Lett. 1994;  349 197-200
  • 105 Adin C A, Croker B P, Agarwal A. Protective effects of exogenous bilirubin on ischemia-reperfusion injury in the isolated perfused rat kidney.  Am J Physiol Renal Physiol. 2004;  288 F778-F784
  • 106 Ceran C, Sonmez K, Turkyllmaz Z, Demirogullarl B, Dursun A, Duzgun E, Basaklar A C, Kale N. Effect of bilirubin in ischemia/reperfusion injury on rat small intestine.  J Pediatr Surg. 2001;  36 1764-1767
  • 107 Fondevila C, Shen X D, Tsuchiyashi S, Yamashita K, Csizmadia E, Lassman C, Busuttil R W, Kupiec-Weglinski J W, Bach F H. Biliverdin therapy protects rat livers from ischemia and reperfusion injury.  Hepatology. 2004;  40 1333-1341
  • 108 Clark J E, Foresti R, Sarathchandra P, Kaur H, Green C J, Motterlini R. Heme oxygenase-1-derived bilirubin ameliorates postischemic myocardial dysfunction.  Am J Physiol Heart Circ Physiol. 2000;  278 H643-H651
  • 109 Hartsfield C L. Cross talk between carbon monoxide and nitric oxide.  Antioxid Redox Signal. 2002;  4 301-307
  • 110 Stone J R, Marletta M A. Soluble guanylate cyclase from bovine lung: activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric states.  Biochemistry. 1994;  33 5636-5640
  • 111 Brune B, Ullrich V. Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase.  Mol Pharmacol. 1987;  32 497-504
  • 112 Fujita T, Toda K, Karimova A, Yan S F, Naka Y, Yet S F, Pinsky D J. Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis.  Nat Med. 2001;  7 598-604
  • 113 Liu Y, Christou H, Morita T, Laughner E, Semenza G L, Kourembanas S. Carbon monoxide and nitric oxide suppress the hypoxic induction of vascular endothelial growth factor gene via the 5’ enhancer.  J Biol Chem. 1998;  273 15 257-15 262
  • 114 Morita T, Perrella M A, Lee M E, Kourembanas S. Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP.  Proc Natl Acad Sci USA. 1995;  92 1475-1479
  • 115 Morita T, Kourembanas S. Endothelial cell expression of vasoconstrictors and growth factors is regulated by smooth muscle cell-derived carbon monoxide.  J Clin Invest. 1995;  96 2676-2682
  • 116 Morita T, Mitsialis S A, Koike H, Liu Y, Kourembanas S. Carbon monoxide controls the proliferation of hypoxic vascular smooth muscle cells.  J Biol Chem. 1997;  272 32 804-32 809
  • 117 Togane Y, Morita T, Suematsu M, Ishimura Y, Yamazaki J I, Katayama S. Protective roles of endogenous carbon monoxide in neointimal development elicited by arterial injury.  Am J Physiol Heart Circ Physiol. 2000;  278 H623-H632
  • 118 Zakhary R, Gaine S P, Dinerman J L, Ruat M, Flavahan N A, Snyder S H. Heme oxygenase 2: endothelial and neuronal localization and role in endothelium-dependent relaxation.  Proc Natl Acad Sci USA. 1996;  93 795-798
  • 119 Cardell L O, Ueki I F, Stjarne P, Agusti C, Takeyama K, Linden A, Nadel J A. Bronchodilatation in vivo by carbon monoxide, a cyclic GMP related messenger.  Br J Pharmacol. 1998;  124 1065-1068
  • 120 Wang R, Wu L, Wang Z. The direct effect of carbon monoxide on KCa channels in vascular smooth muscle cells.  Pflugers Arch. 1997;  434 285-291
  • 121 Brouard S, Otterbein L E, Anrather J, Tobiasch E, Bach F H, Choi A M, Soares M P. Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis.  J Exp Med. 2000;  192 1015-1026
  • 122 Otterbein L E, Otterbein S L, Ifedigbo E, Liu F, Morse D E, Fearns C, Ulevitch R J, Knickelbein R, Flavell R A, Choi A M. MKK3 mitogen-activated protein kinase pathway mediates carbon monoxide-induced protection against oxidant-induced lung injury.  Am J Pathol. 2003;  163 2555-2563
  • 123 Otterbein L E, Bach F H, Alam J, Soares M, Tao L H, Wysk M, Davis R J, Flavell R A, Choi A M. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway.  Nat Med. 2000;  6 422-428
  • 124 Sato K, Balla J, Otterbein L, Smith R N, Brouard S, Lin Y, Csizmadia E, Sevigny J, Robson S C, Vercellotti G, Choi A M, Bach F H, Soares M P. Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants.  J Immunol. 2001;  166 4185-4194
  • 125 Yachie A, Niida Y, Wada T, Igarashi N, Kaneda H, Toma T, Ohta K, Kasahara Y, Koizumi S. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency.  J Clin Invest. 1999;  103 129-135
  • 126 Kawashima A, Oda Y, Yachie A, Koizumi S, Nakanishi I. Heme oxygenase-1 deficiency: the first autopsy case.  Hum Pathol. 2002;  33 125-130
  • 127 Horvath I, Donnelly L E, Kiss A, Paredi P, Kharitonov S A, Barnes P J. Raised levels of exhaled carbon monoxide are associated with an increased expression of heme oxygenase-1 in airway macrophages in asthma: a new marker of oxidative stress.  Thorax. 1998;  53 668-672
  • 128 Paredi P, Shah P L, Montuschi P, Sullivan P, Hodson M E, Kharitonov S A, Barnes P J. Increased carbon monoxide in exhaled air of patients with cystic fibrosis.  Thorax. 1999;  54 917-920
  • 129 Scharte M, Bone H G, Van Aken H, Meyer J. Increased carbon monoxide in exhaled air of critically ill patients.  Biochem Biophys Res Commun. 2000;  267 423-426
  • 130 Biernacki W A, Kharitonov S A, Barnes P J. Exhaled carbon monoxide in patients with lower respiratory tract infection.  Respir Med. 2001;  95 1003-1005
  • 131 Montuschi P, Kharitonov S A, Barnes P J. Exhaled carbon monoxide and nitric oxide in COPD.  Chest. 2001;  120 496-501
  • 132 Zegdi R, Perrin D, Burdin M, Boiteau R, Tenaillon A. Increased endogenous carbon monoxide production in severe sepsis.  Intensive Care Med. 2002;  28 793-796
  • 133 Andersson J A, Uddman R, Cardell L O. Increased carbon monoxide levels in the nasal airways of subjects with a history of seasonal allergic rhinitis and in patients with upper respiratory tract infection.  Clin Exp Allergy. 2002;  32 224-227
  • 134 Hayashi M, Takahashi T, Morimatsu H, Fujii H, Taga N, Mizobuchi S, Matsumi M, Katayama H, Yokoyama M, Taniguchi M, Morita K. Increased carbon monoxide concentration in exhaled air after surgery and anesthesia.  Anesth Analg. 2004;  99 444-448
  • 135 Morimatsu H, Takahashi T, Maeshima K, Inoue K, Kawakami T, Shimizu H, Takeuchi M, Yokoyama M, Katayama H, Morita K. Increased heme catabolism in critically ill patients: Correlation among exhaled carbon monoxide, arterial carboxyhemoglobin and serum bilirubin IXα concentrations.  Am J Physiol Lung Cell Mol Physiol. 2005;  veröffentlicht on-line, doi: 10. 1152/ajplung. 00 031. 2005
  • 136 Nakao A, Kimizuka K, Stolz D B, Neto J S, Kaizu T, Choi A M, Uchiyama T, Zuckerbraun B S, Nalesnik M A, Otterbein L E, Murase N. Carbon monoxide inhalation protects rat intestinal grafts from ischemia/reperfusion injury.  Am J Pathol. 2003;  163 1587-1598
  • 137 Nakao A, Moore B A, Murase N, Liu F, Zuckerbraun B S, Bach F H, Choi A M, Nalesnik M A, Otterbein L E, Bauer A J. Immunomodulatory effects of inhaled carbon monoxide on rat syngeneic small bowel graft motility.  Gut. 2003;  52 1278-1285
  • 138 Otterbein L E, Zuckerbraun B S, Haga M, Liu F, Song R, Usheva A, Stachulak C, Bodyak N, Smith R N, Csizmadia E, Tyagi S, Akamatsu Y, Flavell R J, Billiar T R, Tzeng E, Bach F H, Choi A M, Soares M P. Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury.  Nat Med. 2003;  9 183-190
  • 139 Fujimoto H, Ohno M, Ayabe S, Kobayashi H, Ishizaka N, Kimura H, Yoshida K, Nagai R. Carbon monoxide protects against cardiac ischemia-reperfusion injury in vivo via MAPK and Akt-eNOS pathways.  Arterioscler Thromb Vasc Biol. 2004;  24 1848-1853
  • 140 Lavitrano M, Smolenski R T, Musumeci A, Maccherini M, Slominska E, Di Florio E, Bracco A, Mancini A, Stassi G, Patti M, Giovannoni R, Froio A, Simeone F, Forni M, Bacci M L, D’Alise G, Cozzi E, Otterbein L E, Yacoub M H, Bach F H, Calise F. Carbon monoxide improves cardiac energetics and safeguards the heart during reperfusion after cardiopulmonary bypass in pigs.  FASEB J. 2004;  18 1093-1095
  • 141 Neto J S, Nakao A, Kimizuka K, Romanosky A J, Stolz D B, Uchiyama T, Nalesnik M A, Otterbein L E, Murase N. Protection of transplant-induced renal ischemia-reperfusion injury with carbon monoxide.  Am J Physiol Renal Physiol. 2004;  287 F979-F989
  • 142 Ott M C, Scott J R, Bihari A, Badhwar A, Otterbein L E, Gray D K, Harris K A, Potter R F. Inhalation of carbon monoxide prevents liver injury and inflammation following hind limb ischemia/reperfusion.  FASEB J. 2005;  19 106-108
  • 143 Zuckerbraun B S, McCloskey C A, Gallo D, Liu F, Ifedigbo E, Otterbein L E, Billiar T R. Carbon monoxide prevents multiple organ injury in a model of hemorrhagic schock and resuscitation.  Shock. 2005;  23 527-532
  • 144 Zuckerbraun B S, Otterbein L E, Boyle P, Jaffe R, Upperman J, Zamora R, Ford H R. Carbon monoxide protects against the development of experimental necrotizing enterocolitis.  Am J Physiol Gastrointest Liver Physiol. 2005;  289 G607-G613
  • 145 Clayton C E, Carraway M S, Suliman H B, Thalmann E D, Thalmann K N, Schmechel D E, Piantadosi C A. Inhaled carbon monoxide and hyperoxic lung injury in rats.  Am J Physiol Lung Cell Mol Physiol. 2001;  281 L949-L957
  • 146 Ghosh S, Wilson M R, Choudhury S, Yamamoto H, Goddard M E, Falusi B, Marczin N, Takata M. Effects of Inhaled Carbon Monoxide on Acute Lung Injury in Mice.  Am J Physiol Lung Cell Mol Physiol. 2005;  288 L1003-L1009
  • 147 Berberat P O, Rahim Y I, Yamashita K, Warny M M, Csizmadia E, Robson S C, Bach F H. Heme oxygenase-1-generated biliverdin ameliorates experimental murine colitis.  Inflamm Bowel Dis. 2005;  11 350-359
  • 148 Mayr F B, Spiel A, Leitner J, Marsik C, Germann P, Ullrich R, Wagner O, Jilma B. Effects of Carbon Monoxide Inhalation during Experimental Endotoxemia in Humans.  Am J Respir Crit Care Med. 2005;  171 354-360
  • 149 Motterlini R, Clark J E, Foresti R, Sarathchandra P, Mann B E, Green C J. Carbon monoxide-releasing molecules: characterization of biochemical and vascular activities.  Circ Res. 2002;  90 e17-e24
  • 150 Clark J E, Naughton P, Shurey S, Green C J, Johnson T R, Mann B E, Foresti R, Motterlini R. Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule.  Circ Res. 2003;  93 e2-e8
  • 151 Martins P N, Reuzel-Selke A, Jurisch A, Atrott K, Pascher A, Pratschke J, Buelow R, Neuhaus P, Volk H D, Tullius S G. Induction of carbon monoxide in the donor reduces graft immunogenicity and chronic graft deterioration.  Transplant Proc. 2005;  37 379-381
  • 152 Dorman R B, Wunder C, Brock R W. Cobalt protoporphyrin protects against hepatic parenchymal injury and microvascular dysfunction during experimental rhabdomyolysis.  Shock. 2005;  23 275-280
  • 153 Almolki A, Taille C, Martin G F, Jose P J, Zedda C, Conti M, Megret J, Henin D, Aubier M, Boczkowski J. Heme oxygenase attenuates allergen-induced airway inflammation and hyperreactivity in guinea pigs.  Am J Physiol Lung Cell Mol Physiol. 2004;  287 L26-L34
  • 154 Woo J, Iyer S, Mori N, Buelow R. Alleviation of graft-versus-host disease after conditioning with cobalt-protoporphyrin, an inducer of heme oxygenase-1.  Transplantation. 2000;  69 623-633
  • 155 Tullius S G, Nieminen-Kelha M, Buelow R, Reutzel-Selke A, Martins P N, Pratschke J, Bachmann U, Lehmann M, Southard D, Iyer S, Schmidbauer G, Sawitzki B, Reinke P, Neuhaus P, Volk H D. Inhibition of ischemia/reperfusion injury and chronic graft deterioration by a single-donor treatment with cobalt-protoporphyrin for the induction of heme oxygenase-1.  Transplantation. 2002;  74 591-598
  • 156 Nath K A, Grande J P, Croatt A J, Likely S, Hebbel R P, Enright H. Intracellular targets in heme protein-induced renal injury.  Kidney Int. 1998;  53 100-111
  • 157 Suliman H B, Carraway M S, Velsor L W, Day B J, Ghio A J, Piantadosi C A. Rapid mtDNA deletion by oxidants in rat liver mitochondria after hemin exposure.  Free Radic Biol Med. 2002;  32 246-256
  • 158 Lee P J, Alam J, Sylvester S L, Inamdar N, Otterbein L, Choi A M. Regulation of heme oxygenase-1 expression in vivo and in vitro in hyperoxic lung injury.  Am J Respir Cell Mol Biol. 1996;  14 556-568
  • 159 Otterbein L E, Mantell L L, Choi A M. Carbon monoxide provides protection against hyperoxic lung injury.  Am J Physiol. 1999;  276 L688-L694
  • 160 Dolinay T, Szilasi M, Liu M, Choi A M. Inhaled carbon monoxide confers antiinflammatory effects against ventilator-induced lung injury.  Am J Respir Crit Care Med. 2004;  170 613-620
  • 161 Moore B A, Overhaus M, Whitcomb J, Ifedigbo E, Choi A M, Otterbein L E, Bauer A J. Brief inhalation of low-dose carbon monoxide protects rodents and swine from postoperative ileus.  Crit Care Med. 2005;  33 1317-1326
  • 162 Zhou Z, Song R, Fattman C L, Greenhill S, Alber S, Oury T D, Choi A M, Morse D. Carbon monoxide suppresses bleomycin-induced lung fibrosis.  Am J Pathol. 2005;  166 27-37

Prof. Dr. Stephan A. Loer, M. D., M. Sc.

Klinik für Anästhesiologie

Universitätsklinikum Düsseldorf · Moorenstraße 5 · 40225 Düsseldorf

Email: loer@med.uni-duesseldorf.de

    >