Semin Thromb Hemost 2006; 32: 039-048
DOI: 10.1055/s-2006-939553
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Protease-Activated Receptors: How Proteases Signal to Cells to Cause Inflammation and Pain

Nigel W. Bunnett1
  • 1Departments of Surgery and Physiology, University of California at San Francisco, San Francisco, California
Further Information

Publication History

Publication Date:
02 May 2006 (online)

ABSTRACT

Certain serine proteases that originate from the circulation (coagulation factors), inflammatory cells (mast cell tryptase, neutrophil granzyme A, and proteinase 3), and epithelial and neuronal tissues (trypsins) can specifically regulate cells by cleaving protease-activated receptors (PARs), a family of four G-protein-coupled receptors. Proteases cleave PARs on multiple cell types to reveal tethered ligand domains that bind to and activate the cleaved receptors. The proteases that activate PARs are often generated and secreted during injury and inflammation, and PARs orchestrate tissue responses to these insults, including hemostasis, inflammation, nociception, and repair mechanisms. Agonists of PARs, notably PAR2, induce inflammation in many tissues that is characterized by hyperemia, extravasation of plasma proteins, granulocyte infiltration, and alterations in epithelial permeability. These effects are mediated in part by the release of neuropeptides substance P and calcitonin gene-related peptide from sensory nerve fibers in peripheral tissues. Proteases that activate PAR2 also induce the release of neuropeptides from the central projections of these nerves in the dorsal horn of the spinal cord, where they participate in pain transmission. Accumulating evidence from PAR-deficient mice indicates that these mechanisms may contribute to experimental models of disease and raise the possibility that protease inhibitors and PAR antagonists may be useful therapies for a variety of inflammatory and painful conditions.

REFERENCES

  • 1 Macfarlane S R, Seatter M J, Kanke T, Hunter G D, Plevin R. Proteinase-activated receptors.  Pharmacol Rev. 2001;  53 245-282
  • 2 Coughlin S R. Protease-activated receptors in vascular biology.  Thromb Haemost. 2001;  86 298-307
  • 3 Vergnolle N, Wallace J L, Bunnett N W, Hollenberg M D. Protease-activated receptors in inflammation, neuronal signaling and pain.  Trends Pharmacol Sci. 2001;  22 146-152
  • 4 Ossovskaya V S, Bunnett N W. Protease-activated receptors: contribution to physiology and disease.  Physiol Rev. 2004;  84 579-621
  • 5 Kanke T, Ishiwata H, Kabeya M et al.. Binding of a highly potent protease-activated receptor-2 (PAR2) activating peptide, [3H]2-furoyl-LIGRL-NH2, to human PAR2.  Br J Pharmacol. 2005;  145 255-263
  • 6 Andrade-Gordon P, Maryanoff B E, Derian C K et al.. Design, synthesis, and biological characterization of a peptide-mimetic antagonist for a tethered-ligand receptor.  Proc Natl Acad Sci USA. 1999;  96 12257-12262
  • 7 Vu T K, Wheaton V I, Hung D T, Charo I, Coughlin S R. Domains specifying thrombin-receptor interaction.  Nature. 1991;  353 674-677
  • 8 Ishihara H, Connolly A J, Zeng D et al.. Protease-activated receptor 3 is a second thrombin receptor in humans.  Nature. 1997;  386 502-506
  • 9 Xu W F, Andersen H, Whitmore T E et al.. Cloning and characterization of human protease-activated receptor 4.  Proc Natl Acad Sci USA. 1998;  95 6642-6646
  • 10 Kahn M L, Zheng Y W, Huang W et al.. A dual thrombin receptor system for platelet activation.  Nature. 1998;  394 690-694
  • 11 Nakanishi-Matsui M, Zheng Y W, Sulciner D J et al.. PAR3 is a cofactor for PAR4 activation by thrombin.  Nature. 2000;  404 609-613
  • 12 Camerer E, Huang W, Coughlin S R. Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa.  Proc Natl Acad Sci USA. 2000;  97 5255-5260
  • 13 Riewald M, Ruf W. Mechanistic coupling of protease signaling and initiation of coagulation by tissue factor.  Proc Natl Acad Sci USA. 2001;  98 7742-7747
  • 14 Camerer E, Kataoka H, Kahn M, Lease K, Coughlin S R. Genetic evidence that protease-activated receptors mediate factor Xa signaling in endothelial cells.  J Biol Chem. 2002;  277 16081-16087
  • 15 Riewald M, Petrovan R J, Donner A, Mueller B M, Ruf W. Activation of endothelial cell protease activated receptor 1 by the protein C pathway.  Science. 2002;  296 1880-1882
  • 16 Griffin J H, Zlokovic B, Fernandez J A. Activated protein C: potential therapy for severe sepsis, thrombosis, and stroke.  Semin Hematol. 2002;  39 197-205
  • 17 Bernard G R, Vincent J L, Laterre P F et al.. Efficacy and safety of recombinant human activated protein C for severe sepsis.  N Engl J Med. 2001;  344 699-709
  • 18 Cheng T, Liu D, Griffin J H et al.. Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective.  Nat Med. 2003;  9 338-342
  • 19 Guo H, Liu D, Gelbard H et al.. Activated protein C prevents neuronal apoptosis via protease activated receptors 1 and 3.  Neuron. 2004;  41 563-572
  • 20 Brueckmann M, Horn S, Lang S et al.. Recombinant human activated protein C upregulates cyclooxygenase-2 expression in endothelial cells via binding to endothelial cell protein C receptor and activation of protease-activated receptor-1.  Thromb Haemost. 2005;  93 743-750
  • 21 Wiegand U, Corbach S, Minn A, Kang J, Muller-Hill B. Cloning of the cDNA encoding human brain trypsinogen and characterization of its product.  Gene. 1993;  136 167-175
  • 22 Cottrell G S, Amadesi S, Grady E F, Bunnett N W. Trypsin IV, a novel agonist of protease-activated receptors 2 and 4.  J Biol Chem. 2004;  279 13532-13539
  • 23 Kong W, McConalogue K, Khitin L M et al.. Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2.  Proc Natl Acad Sci USA. 1997;  94 8884-8889
  • 24 Katona G, Berglund G I, Hajdu J, Graf L, Szilagyi L. Crystal structure reveals basis for the inhibitor resistance of human brain trypsin.  J Mol Biol. 2002;  315 1209-1218
  • 25 Molino M, Barnathan E S, Numerof R et al.. Interactions of mast cell tryptase with thrombin receptors and PAR-2.  J Biol Chem. 1997;  272 4043-4049
  • 26 Corvera C U, Dery O, McConalogue K et al.. Mast cell tryptase regulates rat colonic myocytes through proteinase-activated receptor 2.  J Clin Invest. 1997;  100 1383-1393
  • 27 Reed D E, Barajas-Lopez C, Cottrell G et al.. Mast cell tryptase and proteinase-activated receptor 2 induce hyperexcitability of guinea-pig submucosal neurons.  J Physiol. 2003;  547 531-542
  • 28 Huang C, De Sanctis G T, O'Brien P J et al.. Evaluation of the substrate specificity of human mast cell tryptase beta I and demonstration of its importance in bacterial infections of the lung.  J Biol Chem. 2001;  276 26276-26284
  • 29 Compton S J, Renaux B, Wijesuriya S J, Hollenberg M D. Glycosylation and the activation of proteinase-activated receptor 2 (PAR(2)) by human mast cell tryptase.  Br J Pharmacol. 2001;  134 705-718
  • 30 Sambrano G R, Huang W, Faruqi T et al.. Cathepsin G activates protease-activated receptor-4 in human platelets.  J Biol Chem. 2000;  275 6819-6823
  • 31 Uehara A, Sugawara S, Muramoto K, Takada H. Activation of human oral epithelial cells by neutrophil proteinase 3 through protease-activated receptor-2.  J Immunol. 2002;  169 4594-4603
  • 32 Nystedt S, Ramakrishnan V, Sundelin J. The proteinase-activated receptor 2 is induced by inflammatory mediators in human endothelial cells. Comparison with the thrombin receptor.  J Biol Chem. 1996;  271 14910-14915
  • 33 Cicala C, Pinto A, Bucci M et al.. Protease-activated receptor-2 involvement in hypotension in normal and endotoxemic rats in vivo.  Circulation. 1999;  99 2590-2597
  • 34 Hamilton J R, Cocks T M. Heterogeneous mechanisms of endothelium-dependent relaxation for thrombin and peptide activators of protease-activated receptor-1 in porcine isolated coronary artery.  Br J Pharmacol. 2000;  130 181-188
  • 35 Hamilton J R, Moffatt J D, Frauman A G, Cocks T M. Protease-activated receptor (PAR)1 but not PAR2 or PAR4 mediates endothelium-dependent relaxation to thrombin and trypsin in human pulmonary arteries.  J Cardiovasc Pharmacol. 2001;  38 108-119
  • 36 Hamilton J R, Moffatt J D, Tatoulis J, Cocks T M. Enzymatic activation of endothelial protease-activated receptors is dependent on artery diameter in human and porcine isolated coronary arteries.  Br J Pharmacol. 2002;  136 492-501
  • 37 Roy S S, Saifeddine M, Loutzenhiser R, Triggle C R, Hollenberg M D. Dual endothelium-dependent vascular activities of proteinase-activated receptor-2-activating peptides: evidence for receptor heterogeneity.  Br J Pharmacol. 1998;  123 1434-1440
  • 38 Robin J, Kharbanda R, Mclean P, Campbell R, Vallance P. Protease-activated receptor 2-mediated vasodilatation in humans in vivo: role of nitric oxide and prostanoids.  Circulation. 2003;  107 954-959
  • 39 Vergnolle N, Hollenberg M D, Wallace J L. Pro- and anti-inflammatory actions of thrombin: a distinct role for proteinase-activated receptor-1 (PAR1).  Br J Pharmacol. 1999;  126 1262-1268
  • 40 de Garavilla L, Vergnolle N, Young S H et al.. Agonists of proteinase-activated receptor 1 induce plasma extravasation by a neurogenic mechanism.  Br J Pharmacol. 2001;  133 975-987
  • 41 Steinhoff M, Vergnolle N, Young S H et al.. Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism.  Nat Med. 2000;  6 151-158
  • 42 Vergnolle N, Derian C K, D'Andrea M R, Steinhoff M, Andrade-Gordon P. Characterization of thrombin-induced leukocyte rolling and adherence: a potential proinflammatory role for proteinase-activated receptor-4.  J Immunol. 2002;  169 1467-1473
  • 43 Vergnolle N. Proteinase-activated receptor-2-activating peptides induce leukocyte rolling, adhesion, and extravasation in vivo.  J Immunol. 1999;  163 5064-5069
  • 44 Zhu W J, Yamanaka H, Obata K et al.. Expression of mRNA for four subtypes of the proteinase-activated receptor in rat dorsal root ganglia.  Brain Res. 2005;  1041 205-211
  • 45 Cenac N, Coelho A M, Nguyen C et al.. Induction of intestinal inflammation in mouse by activation of proteinase-activated receptor-2.  Am J Pathol. 2002;  161 1903-1915
  • 46 Cenac N, Garcia-Villar R, Ferrier L et al.. Proteinase-activated receptor-2-induced colonic inflammation in mice: possible involvement of afferent neurons, nitric oxide, and paracellular permeability.  J Immunol. 2003;  170 4296-4300
  • 47 Green B T, Bunnett N W, Kulkarni-Narla A, Steinhoff M, Brown D R. Intestinal type 2 proteinase-activated receptors: expression in opioid-sensitive secretomotor neural circuits that mediate epithelial ion transport.  J Pharmacol Exp Ther. 2000;  295 410-416
  • 48 Buresi M C, Vergnolle N, Sharkey K A et al.. Activation of proteinase-activated receptor-1 inhibits neurally evoked chloride secretion in the mouse colon in vitro.  Am J Physiol Gastrointest Liver Physiol. 2005;  288 G337-G345
  • 49 Gao C, Liu S, Hu H Z et al.. Serine proteases excite myenteric neurons through protease-activated receptors in guinea pig small intestine.  Gastroenterology. 2002;  123 1554-1564
  • 50 Chin A C, Vergnolle N, MacNaughton W K et al.. Proteinase-activated receptor 1 activation induces epithelial apoptosis and increases intestinal permeability.  Proc Natl Acad Sci USA. 2003;  100 11104-11109
  • 51 Cenac N, Chin A C, Garcia-Villar R et al.. PAR2 activation alters colonic paracellular permeability in mice via IFN-gamma-dependent and -independent pathways.  J Physiol. 2004;  558 913-925
  • 52 Jacob C, Yang P C, Darmoul D et al.. Mast cell tryptase controls paracellular permeability of the intestine: Role of protease-activated receptor 2 and beta-arrestins.  J Biol Chem. 2005;  280 31936-31948
  • 53 Vergnolle N, Cellars L, Mencarelli A et al.. A role for proteinase-activated receptor-1 in inflammatory bowel diseases.  J Clin Invest. 2004;  114 1444-1456
  • 54 Hansen K K, Sherman P M, Cellars L et al.. A major role for proteolytic activity and proteinase-activated receptor-2 in the pathogenesis of infectious colitis.  Proc Natl Acad Sci USA. 2005;  102 8363-8368
  • 55 Fiorucci S, Mencarelli A, Palazzetti B et al.. Proteinase-activated receptor 2 is an anti-inflammatory signal for colonic lamina propria lymphocytes in a mouse model of colitis.  Proc Natl Acad Sci USA. 2001;  98 13936-13941
  • 56 Kawabata A, Kinoshita M, Nishikawa H et al.. The protease-activated receptor-2 agonist induces gastric mucus secretion and mucosal cytoprotection.  J Clin Invest. 2001;  107 1443-1450
  • 57 Nguyen T D, Moody M W, Steinhoff M et al.. Trypsin activates pancreatic duct epithelial cell ion channels through proteinase-activated receptor-2.  J Clin Invest. 1999;  103 261-269
  • 58 Namkung W, Han W, Luo X et al.. Protease-activated receptor 2 exerts local protection and mediates some systemic complications in acute pancreatitis.  Gastroenterology. 2004;  126 1844-1859
  • 59 Sharma A, Tao X, Gopal A et al.. Protection against acute pancreatitis by activation of protease-activated receptor-2.  Am J Physiol Gastrointest Liver Physiol. 2005;  288 G388-G395
  • 60 Cocks T M, Fong B, Chow J M et al.. A protective role for protease-activated receptors in the airways.  Nature. 1999;  398 156-160
  • 61 Schmidlin F, Amadesi S, Dabbagh K et al.. Protease-activated receptor 2 mediates eosinophil infiltration and hyperreactivity in allergic inflammation of the airway.  J Immunol. 2002;  169 5315-5321
  • 62 Takizawa T, Tamiya M, Hara T et al.. Abrogation of bronchial eosinophilic inflammation and attenuated eotaxin content in protease-activated receptor 2-deficient mice.  J Pharmacol Sci. 2005;  98 99-102
  • 63 Ebeling C, Forsythe P, Ng J et al.. Proteinase-activated receptor 2 activation in the airways enhances antigen-mediated airway inflammation and airway hyperresponsiveness through different pathways.  J Allergy Clin Immunol. 2005;  115 623-630
  • 64 De Campo B A, Henry P J. Stimulation of protease-activated receptor-2 inhibits airway eosinophilia, hyperresponsiveness and bronchoconstriction in a murine model of allergic inflammation.  Br J Pharmacol. 2005;  144 1100-1108
  • 65 Howell D C, Johns R H, Lasky J A et al.. Absence of proteinase-activated receptor-1 signaling affords protection from bleomycin-induced lung inflammation and fibrosis.  Am J Pathol. 2005;  166 1353-1365
  • 66 Ferrell W R, Lockhart J C, Kelso E B et al.. Essential role for proteinase-activated receptor-2 in arthritis.  J Clin Invest. 2003;  111 35-41
  • 67 Yang Y H, Hall P, Little C B et al.. Reduction of arthritis severity in protease-activated receptor-deficient mice.  Arthritis Rheum. 2005;  52 1325-1332
  • 68 Marty I, Peclat V, Kirdaite G et al.. Amelioration of collagen-induced arthritis by thrombin inhibition.  J Clin Invest. 2001;  107 631-640
  • 69 Vergnolle N, Bunnett N W, Sharkey K A et al.. Proteinase-activated receptor-2 and hyperalgesia: a novel pain pathway.  Nat Med. 2001;  7 821-826
  • 70 Hoogerwerf W A, Zou L, Shenoy M et al.. The proteinase-activated receptor 2 is involved in nociception.  J Neurosci. 2001;  21 9036-9042
  • 71 Kawabata A, Kawao N, Kuroda R et al.. Peripheral PAR-2 triggers thermal hyperalgesia and nociceptive responses in rats.  Neuroreport. 2001;  12 715-719
  • 72 Hoogerwerf W A, Shenoy M, Winston J H et al.. Trypsin mediates nociception via the proteinase-activated receptor 2: a potentially novel role in pancreatic pain.  Gastroenterology. 2004;  127 883-891
  • 73 Coelho A M, Vergnolle N, Guiard B, Fioramonti J, Bueno L. Proteinases and proteinase-activated receptor 2: a possible role to promote visceral hyperalgesia in rats.  Gastroenterology. 2002;  122 1035-1047
  • 74 Caterina M J, Schumacher M A, Tominaga M et al.. The capsaicin receptor: a heat-activated ion channel in the pain pathway.  Nature. 1997;  389 816-824
  • 75 Amadesi S, Nie J, Vergnolle N et al.. Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia.  J Neurosci. 2004;  24 4300-4312
  • 76 Dai Y, Moriyama T, Higashi T et al.. Proteinase-activated receptor 2-mediated potentiation of transient receptor potential vanilloid subfamily 1 activity reveals a mechanism for proteinase-induced inflammatory pain.  J Neurosci. 2004;  24 4293-4299
  • 77 Kawabata A, Kinoshita M, Kuroda R, Kakehi K. Capsazepine partially inhibits neurally mediated gastric mucus secretion following activation of protease-activated receptor 2.  Clin Exp Pharmacol Physiol. 2002;  29 360-361
  • 78 Barbara G, Stanghellini V, De Giorgio R et al.. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome.  Gastroenterology. 2004;  126 693-702
  • 79 Connolly A J, Ishihara H, Kahn M L, Farese Jr R V, Coughlin S R. Role of the thrombin receptor in development and evidence for a second receptor.  Nature. 1996;  381 516-519
  • 80 Cunningham M A, Rondeau E, Chen X et al.. Protease-activated receptor 1 mediates thrombin-dependent, cell-mediated renal inflammation in crescentic glomerulonephritis.  J Exp Med. 2000;  191 455-462
  • 81 Junge C E, Sugawara T, Mannaioni G et al.. The contribution of protease-activated receptor 1 to neuronal damage caused by transient focal cerebral ischemia.  Proc Natl Acad Sci USA. 2003;  100 13019-13024
  • 82 Lindner J R, Kahn M L, Coughlin S R et al.. Delayed onset of inflammation in protease-activated receptor-2-deficient mice.  J Immunol. 2000;  165 6504-6510
  • 83 Weiss E J, Hamilton J R, Lease K E, Coughlin S R. Protection against thrombosis in mice lacking PAR3.  Blood. 2002;  100 3240-3244
  • 84 Hamilton J R, Cornelissen I, Coughlin S R. Impaired hemostasis and protection against thrombosis in protease-activated receptor 4-deficient mice is due to lack of thrombin signaling in platelets.  J Thromb Haemost. 2004;  2 1429-1435

Nigel W BunnettPh.D. 

University of California, San Francisco

Room C317, 521 Parnassus Avenue, San Francisco, CA 94143-0660

Email: nigelb@itsa.ucsf.edu

    >