Dtsch Med Wochenschr 2006; 131(31/32): 1747-1753
DOI: 10.1055/s-2006-947828
Übersicht | Review article
Onkologie, Molekularbiologie
© Georg Thieme Verlag KG Stuttgart · New York

Entstehung und Bedeutung von numerischen Chromosomenveränderungen bei bösartigen Tumorerkrankungen

Origin and role of aneuploidy in cancerD. Schnerch1 , J. Hasskarl1 , M. Engelhardt1 , R. Wäsch1
  • 1Abteilung Innere Medizin I, Schwerpunkt Hämatologie/Onkologie, Medizinische Universitätsklinik, Freiburg
Further Information

Publication History

Publication Date:
26 July 2006 (online)

Zusammenfassung

Genetische Veränderungen von Tumorzellen haben eine große Bedeutung für die Prognose vieler bösartiger Erkrankungen. Das Verständnis ihrer Entstehung bildet zudem die Grundlage für die Entwicklung neuer Therapiemöglichkeiten. Bei einer Vielzahl von Präkanzerosen und malignen Tumoren finden sich numerische Chromosomen-veränderungen (Aneuploidie), d. h. Zellen mit mehr oder weniger als 46 Chromosomen. Noch ist nicht abschließend geklärt, ob Aneuploidie eine kausale Bedeutung bei der Krebsentstehung hat oder ob es sich um ein Begleitphänomen handelt. Es existieren eine Reihe von Mechanismen, die die Entstehung von Aneuploidie erklären können: Diese umfassen Fehler in der Zellteilung, beispielsweise durch Chromosomenfehlverteilung infolge defekter Kontrollmechanismen oder Spindelpolabnormitäten. Zudem kann der Verlust der Telomersequenzen am Ende eines jeden Chromosoms und die defekte Reparatur von DNA-Schäden zur unkontrollierten Fusion von Chromosomen und dadurch zu abweichenden Chromosomensätzen führen. Schließlich kann ein doppelter Chromosomensatz (Tetraploidie) innerhalb nachfolgender Zellteilungen, z. B. durch Chromosomenverlust, die Entstehung aneuploider Chromosomensätze zur Folge haben. Das regelmäßige Vorkommen dieser Defekte in Präkanzerosen und Malignomen legt eine Beteiligung der Aneuploidie an der Entwicklung und dem Fortschreiten des malignen Phänotyps nahe.

Summary

Genetic aberrations of cancer cells have a profound impact for prognosis in several malignant neoplasias. The understanding of their origin is the basis for the development of new therapeutic options. Aneuploidy is observed in a large variety of premalignancies and tumors. Aneuploid cells harbor less or more than 46 chromosomes. The exact role of aneuploidy in tumorigenesis is still not clear. It has long been debated, whether aneuploidy directly contributes to tumorigenesis or reflects nonspecific changes during tumor progression. Several mechanisms are thought to be responsible for the generation of aneuploid sets of chromosomes: these comprise failure in cell division, such as defective chromosome separation caused by compromised mitotic checkpoint signaling or centrosome aberrations. Moreover, telomere shortening and defective DNA-damage signaling appear to be powerful driving forces of genomic instability. The loss of telomere sequences at the end of each chromosome and DNA double-strand breakage accompanied by compromised damage signaling favor fusion of chromosomes and generation of aneuploidy. Furthermore, aneuploidy arises to a much higher degree from a tetraploid state when compared to diploid cells. The frequent observation of the described defects in pre- and malignant cells supports the hypothesis that aneuploidy contributes to tumorigenesis.

Literatur

  • 1 Alani R M, Hasskarl J, Grace M. et al . Immortalization of primary human keratinocytes by the helix-loop-helix protein, Id-1.  Proc Natl Acad Sci U S A. 1999;  96 9637-9641
  • 2 Albertson D G, Collins C, McCormick F, Gray J W. Chromosome aberrations in solid tumors.  Nat Genet. 2003;  34 369-376
  • 3 Artandi S E, Chang S. et al . Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice.  Nature. 2000;  406 641-645
  • 4 Baretton G, Vogt T, Valina C. et al . Prostate cancers and potential precancerous conditions: DNA cytometric investigations and interphase cytogenetics.  Verh Dtsch Ges Pathol. 1993;  77 86-92
  • 5 Bharadwaj R, Yu H. The spindle checkpoint, aneuploidy, and cancer.  Oncogene. 2004;  23 2016-2027
  • 6 Boveri T. Zur Frage der Entstehung Maligner Tumoren. Jena: Fischer 1914
  • 7 Cahill D P, Lengauer C, Yu J. et al . Mutations of mitotic checkpoint genes in human cancers.  Nature. 1998;  392 300-303
  • 8 D’Assoro A B, Lingle W L, Salisbury J L. Centrosome amplification and the development of cancer.  Oncogene. 2002;  21 6146-6153
  • 9 Dobles M, Liberal V, Scott M L, Benezra R, Sorger P K. Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2.  Cell. 2000;  101 635-645
  • 10 Doxsey S J. Centrosomes as command centres for cellular control.  Nat Cell Biol. 2001;  3 E105-108
  • 11 Duensing A, Duensing S. Guilt by association? p53 and the development of aneuploidy in cancer.  Biochem Biophys Res Commun. 2005;  331 694-700
  • 12 Duensing A, Liu Y, Tseng M. et al . Cyclin-dependent kinase 2 is dispensable for normal centrosome duplication but required for oncogene-induced centrosome overduplication.  Oncogene. 2006;  25 2943-2949
  • 13 Duensing S. A tentative classification of centrosome abnormalities in cancer.  Cell Biol Int. 2005;  29 352-359
  • 14 Duensing S, Munger K. Human papillomaviruses and centrosome duplication errors: modeling the origins of genomic instability.  Oncogene. 2002;  21 6241-6248
  • 15 Duesberg P, Rausch C, Rasnick D, Hehlmann R. Genetic instability of cancer cells is proportional to their degree of aneuploidy.  Proc Natl Acad Sci U S A. 1998;  95 13692-13697
  • 16 Engelhardt M, Drullinsky P et al. Telomerase and telomere length in the development and progression of premalignant lesions to colorectal cancer.  Clin Cancer Res. 1997;  3 1931-1941
  • 17 Engelhardt M, Kumar R. et al . Telomerase regulation, cell cycle, and telomere stability in primitive hematopoietic cells.  Blood. 1997;  90 182-193
  • 18 Engelhardt M, Mackenzie K, Drullinsky P, Silver R T, Moore M A. Telomerase activity and telomere length in acute and chronic leukemia, pre- and post-ex vivo culture.  Cancer Res. 2000;  60 610-617
  • 19 Engelhardt M, Ozkaynak M F, Drullinsky P. et al . Telomerase activity and telomere length in pediatric patients with malignancies undergoing chemotherapy.  Leukemia. 1998;  12 13-24
  • 20 Fujiwara T, Bandi M, Nitta M. et al . Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells.  Nature. 2005;  437 1043-1047
  • 21 Galipeau P C, Cowan D S, Sanchez C A. et al . 17p (p53) allelic losses, 4N (G2/tetraploid) populations, and progression to aneuploidy in Barrett’s esophagus.  Proc Natl Acad Sci USA. 1996;  93 7081-7084
  • 22 Gemma A, Hosoya Y, Seike M. et al . Genomic structure of the human MAD2 gene and mutation analysis in human lung and breast cancers.  Lung Cancer. 2001;  32 289-295
  • 23 Giehl M, Fabarius A, Frank O. et al . Centrosome aberrations in chronic myeloid leukemia correlate with stage of disease and chromosomal instability.  Leukemia. 2005;  19 1192-1197
  • 24 Hanahan D, Weinberg R A. The hallmarks of cancer.  Cell. 2000;  100 57-70
  • 25 Hanks S, Coleman K, Reid S. et al . Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B.  Nat Genet. 2004;  36 1159-1161
  • 26 Hasskarl J, Duensing S, Manuel E, Munger K. The helix-loop-helix protein ID1 localizes to centrosomes and rapidly induces abnormal centrosome numbers.  Oncogene. 2004;  23 1930-1938
  • 27 Hempen P M, Kurpad H, Calhoun E S et al. A double missense variation of the BUB1 gene and a defective mitotic spindle checkpoint in the pancreatic cancer cell line Hs766T.  Hum Mutat. 2003;  21 445
  • 28 Jaffrey R G, Pritchard S C, Clark C. et al . Genomic instability at the BUB1 locus in colorectal cancer, but not in non-small cell lung cancer.  Cancer Res. 2000;  60 4349-4352
  • 29 Kalitsis P, Earle E, Fowler K J, Choo K H. Bub3 gene disruption in mice reveals essential mitotic spindle checkpoint function during early embryogenesis.  Genes Dev. 2000;  14 2277-2282
  • 30 Kinzler K W, Vogelstein B. Lessons from hereditary colorectal cancer.  Cell. 1996;  87 159-170
  • 31 Kops G J, Weaver B A, Cleveland D W. On the road to cancer: aneuploidy and the mitotic checkpoint.  Nat Rev Cancer. 2005;  5 773-785
  • 32 Lengauer C, Kinzler K W, Vogelstein B. Genetic instability in colorectal cancers.  Nature. 1997;  386 623-627
  • 33 Nigg E A. Centrosome aberrations: cause or consequence of cancer progression?.  Nat Rev Cancer. 2002;  2 815-825
  • 34 O’Driscoll M, Jeggo P A. The role of double-strand break repair - insights from human genetics.  Nat Rev Genet. 2006;  7 45-54
  • 35 Ohshima K, Haraoka S. et al . Mutation analysis of mitotic checkpoint genes (hBUB1 and hBUBR1) and microsatellite instability in adult T-cell leukemia/lymphoma.  Cancer Lett. 2000;  158 141-150
  • 36 Olaharski A J, Sotelo R, Solorza-Luna G. et al . Tetraploidy and chromosomal instability are early events during cervical carcinogenesis.  Carcinogenesis. 2006;  27 337-343
  • 37 Persons D L, Croughan W S. et al . Interphase cytogenetics of esophageal adenocarcinoma and precursor lesions.  Cancer Genet Cytogenet. 1998;  106 11-17
  • 38 Pihan G, Doxsey S J. Mutations and aneuploidy: co-conspirators in cancer?.  Cancer Cell. 2003;  4 89-94
  • 39 Rajagopalan H, Lengauer C. Aneuploidy and cancer.  Nature. 2004;  432 338-341
  • 40 Ru H Y, Chen R L, Lu W C, Chen J H. hBUB1 defects in leukemia and lymphoma cells.  Oncogene. 2002;  21 4673-4679
  • 41 Rubin E M, DeRose P B, Cohen C. Comparative image cytometric DNA ploidy of liver cell dysplasia and hepatocellular carcinoma.  Mod Pathol. 1994;  7 677-680
  • 42 Shi Q, King R W. Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines.  Nature. 2005;  437 1038-1042
  • 43 Shichiri M, Yoshinaga K, Hisatomi H et al. Genetic and epigenetic inactivation of mitotic checkpoint genes hBUB1 and hBUBR1 and their relationship to survival.  Cancer Res. 2002;  62 13-17
  • 44 Shiloh Y. ATM and related protein kinases: safeguarding genome integrity.  Nat Rev Cancer. 2003;  3 155-168
  • 45 Storchova Z, Pellman D. From polyploidy to aneuploidy, genome instability and cancer.  Nat Rev Mol Cell Biol. 2004;  5 45-54
  • 46 Takahashi T, Haruki N, Nomoto S. et al . Identification of frequent impairment of the mitotic checkpoint and molecular analysis of the mitotic checkpoint genes, hsMAD2 and p55CDC, in human lung cancers.  Oncogene. 1999;  18 4295-300
  • 47 Wäsch R, Cross F R. APC-dependent proteolysis of the mitotic cyclin Clb2 is essential for mitotic exit.  Nature. 2002;  418 556-562
  • 48 Wäsch R, Engelbert D. Anaphase-promoting complex-dependent proteolysis of cell cycle regulators and genomic instability of cancer cells.  Oncogene. 2005;  24 1-10
  • 49 Zhou H, Kuang J. et al . Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation.  Nat Genet. 1998;  20 189-193

Priv.-Doz. Dr. med. Ralph Wäsch

Abteilung Innere Medizin I, Schwerpunkt Hämatologie und Onkologie, Medizinische Universitätsklinik

Hugstetterstraße 55

79106 Freiburg, Germany

Phone: 0761/2707205

Fax: 0761/2703318

Email: ralph.waesch@uniklinik-freiburg.de

    >