Exp Clin Endocrinol Diabetes 2006; 114(10): 555-562
DOI: 10.1055/s-2006-948306
Article

© J. A. Barth Verlag in Georg Thieme Verlag KG · Stuttgart · New York

Osteopontin Deficiency Impacts the Pancreatic Th1/Th2 Cytokine Profile Following Multiple Low Dose Streptozotocin-Induced Diabetes

H. A. Arafat 1 , E. Lada 1 , A. K. Katakam 1 , N. Amin 1
  • 1Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
Further Information

Publication History

Received: May 8, 2006 First decision: May 19, 2006

Accepted: June 21, 2006

Publication Date:
19 December 2006 (online)

Abstract

Osteopontin (OPN) is a phosphorylated acidic glycoprotein that causes chemotaxis of macrophages and downregulation of nitric oxide synthesis. OPN has been shown to be involved in the pathogenesis of autoimmune diseases. Here, we tested the hypothesis that increased expression of pancreatic OPN in experimental diabetes has a protective role. The immune response phenotype associated with the induction of diabetes was evaluated in male OPN knockout (KO) and wild type (WT) mice. Multiple low dose streptozotocin (STZ) (MLDS), 40 mg/kg, was injected intraperitoneally for 5 days to establish a model for autoimmune diabetes. Glucose levels and body weight were evaluated in the vehicle and STZ treated groups. ELISA assay was used to monitor OPN serum levels in the WT diabetic mice. Histological studies evaluated insulitis development and Western blot analysis was employed to evaluate the expression levels of Th1 cytokines (TNF-α and IFN-γ) and Th2 cytokines (IL-10 and IL-4). Immunohistochemistry was employed to localize IL-4 in the diabetic WT pancreata. Both WT and KO mice developed diabetes. In the WT, OPN serum levels were significantly upregulated 1 day after STZ injection. Pancreatic islets appeared larger in the KO group. Mild lymphocytic infiltrate and apoptosis were detected in the WT diabetic islets, while no signs of inflammation were detected in the KO group. WT diabetics showed upregulation of both Th1 and Th2 cytokines, whereas in the diabetic KO a mild upregulation of Th1 cytokines was detected with significant downregulation of IL-4. In the diabetic WT mice, IL-4 was localized in the interlobular connective tissue. Our studies show that the pancreatic immune response to MLDS diabetes is balanced between the Th1 and Th2 in the WT animals. KO mice show mild polarization towards the Th1 response. Although OPN is a known promoter for Th1 responses, it appears to have a regulatory control over the Th2 response in MLDS.

References

  • 1 Arafat HA, Wein AJ, Chacko S. Osteopontin gene expression and immunolocalization in the rabbit urinary tract.  J Urol. 2002;  167 746-752
  • 2 Arafat HA, Katakam AK, Gabbeta J, Dafoe DC. Osteopontin prevents cytokine-mediated dysfunction in pancreatic islets and inhibits nitric oxide production through inhibition of induced nitric oxide synthase gene expression. American Transplant Congress, Washington DC 2003
  • 3 Arreaza G, Salojin K, Yang W, Zhang J, Gill B, Mi QS, Gao JX, Meagher C, Cameron M, Delovitch TL. Deficient activation and resistance to activation-induced apoptosis of CD8+ T cells is associated with defective peripheral tolerance in nonobese diabetic mice.  Clin Immunol. 2003;  107 103-115
  • 4 Ashkar S, Weber GF, Panoutsakopoulou V, Sanchirico ME, Jansson M, Zawaideh S, Rittling SR, Denhardt DT, Glimcher MJ, Cantor H. Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity.  Science. 2000;  287 860-864
  • 5 Augstein P, Dunger A, Heinke P, Wachlin G, Berg S, Hehmke B, Salzsieder E. Prevention of autoimmune diabetes in NOD mice by troglitazone is associated with modulation of ICAM-1 expression on pancreatic islet cells and IFN-gamma expression in splenic T cells.  Biochem Biophys Res Commun. 2003;  304 378-384
  • 6 Blom T, Franzen A, Heinegard D, Holmdahl R. Comment on “The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease”.  Science. 2003;  299 1845
  • 7 Constant SL. Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches.  Annu Rev Immunol. 1997;  15 297-322
  • 8 Denhardt DT, Giachelli CM, Rittling SR. Role of osteopontin in cellular signaling and toxicant injury.  Annual Review of Pharmacology and Toxicology. 2003;  41 723-749
  • 9 Gallichan WS, Kafri T, Krahl T, Verma I M, Sarvetnick N. Lentivirus-mediated transduction of islet grafts with interleukin 4 results in sustained gene expression and protection from insulitis.  Hum Gene Ther. 1998;  9 2717-2726
  • 10 Garren H, Ruiz PJ, Watkins TA, Fontoura P, Nguyen LT, Estline ER, Hirschberg DL, Steinman L. Combination of gene delivery and DNA vaccination to protect from and reverse Th1 autoimmune disease via deviation to the Th2 pathway.  Immunity. 2001;  15 15-22
  • 11 Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labelling of nuclear DNA fragmentation.  J Cell Biol. 1992;  119 493-501
  • 12 Gould KL, Hunter T. Platelet-derived growth factor induces multisite phosphorylation of pp60c-src and increases its protein-tyrosine kinase activity.  Mol Cell Biol. 1988;  8 3345-3356
  • 13 Katakam AK, Chipitsyna G, Gong Q, Vancha AR, Gabbeta J, Arafat HA. Streptozotocin (STZ) mediates acute upregulation of serum and pancreatic osteopontin (OPN): a novel islet-protective effect of OPN through inhibition of STZ-induced nitric oxide production.  J Endocrinol. 2005;  187 237-247
  • 14 Kelly DJ, Wilkinson-Berka JL, Ricardo SD, Cox AJ, Gilbert RE. Progression of tubulointerstitial injury by osteopontin-induced macrophage recruitment in advanced diabetic nephropathy of transgenic (mRen-2)27 rats.  Nephrol Dial Transplant. 2002;  17 985-991
  • 15 Lenschow DJ, Ho SC, Sattar H, Rhee L, Gray G, Nabavi N, Herold KC, Bluestone JA. Differential effects of anti-B7-1 and anti-B7-2 monoclonal antibody treatment on the development of diabetes in the nonobese diabetic mouse.  J Exp Med. 1995;  181 139-146
  • 16 Lucey DR, Clerici M, Shearer GM. Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases.  Clin Microbiol Rev. 1996;  9 532-562
  • 17 Magil AB, Pichler RH, Johnson RJ. Osteopontin in chronic puromycin aminonucleoside nephrosis.  J Am Soc Nephrol. 1997;  8 1383-1390
  • 18 Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins.  J Immunol. 1986;  136 2348-2357
  • 19 Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. 1986.  J Immunol. 2005;  175 5-14
  • 20 Myers LK, Tang B, Stuart JM, Kang AH. The role of IL-4 in regulation of murine collagen induced arthritis.  Clin Immuol. 2002;  102 185-191
  • 21 Nakamura M, Oka M, Iizuka N, Kawauchi S, Gondo T, Ueno T, Tangoku A. Osteopontin expression in chronic pancreatitis.  Pancreas. 2002;  25 182-187
  • 22 O’Regan AW, Hayden JM, Berman, JS. Osteopontin augments CD3-mediated interferon-gamma and CD40 ligand expression by T cells, which results in IL-12 production from peripheral blood mononuclear cells.  J Leukoc Biol. 2000;  68 495-502
  • 23 Rabinovitch A, Suarez-Pinzon WL. Cytokines and their roles in pancreatic islet beta-cell destruction and insulin-dependent diabetes mellitus.  Biochem Pharmacol. 1998;  55 1139-1149
  • 24 Rittling SR, Matsumoto HN, McKee MD, Nanci A, An XR, Novick KE, Kowalski AJ, Noda M, Denhardt DT. Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro.  J Bone Miner Res. 1998;  13 1101-1111
  • 25 Sedivy R, Peters K, Kloppel G. Osteopontin expression in ductal adenocarcinomas and undifferentiated carcinomas of the pancreas.  Virchows Arch. 2005;  446 41-45
  • 26 Sharif S, Arreaza GA, Zucker P, Delovitch TL. Regulatory natural killer T cells protect against spontaneous and recurrent type 1 diabetes.  Ann N Y Acad Sci. 2002;  958 77-88
  • 27 Skeen MJ, Miller MA, Shinnick TM, Ziegler HK. Regulation of murine macrophage IL-12 production: activation of macrophages in vivo, restimulation in vitro, and modulation by other cytokines.  J Immunol. 1996;  156 1196-1206
  • 28 Slover RH, Eisenbarth GS. Prevention of Type 1 diabetes and recurrent beta-cell destruction of transplanted islets.  Endocr Rev. 1997;  18 241-258
  • 29 Suarez-Pinzon WL, Rabinovitch A. Approaches to type 1 diabetes prevention by intervention in cytokine immunoregulatory circuits.  Int J Exp Diabetes Res. 2001;  2 3-17
  • 30 Weiss L, Barak V, Zeira M, Abdul-Hai A, Raibstein I, Reich S, Hirschfeld E, Gross D, Slavin S. Cytokine production in Linomide-treated nod mice and the potential role of a Th (1)/Th(2) shift on autoimmune and anti-inflammatory processes.  Cytokine. 2002;  19 85-93
  • 31 Wolfe T, Bot A, Hughes A, Mohrle U, Rodrigo E, Jaume JC, Baekkeskou S, von Herrath M. Endogenous expression levels of autoantigens influence success or failure of DNA immunizations to prevent type 1 diabetes: addition of IL-4 increases safety.  Eur J Immunol. 2002;  32 113-121
  • 32 Yamamoto AM, Chernajovsky Y, Lepault F, Podhajer O, Feldmann M, Bach JF, Chatenoud L. The Activity of immunoregulatory T cells mediating active tolerance is potentiated in nonobese diabetic mice by an IL-4 based retroviral gene therapy.  J Immunol. 2001;  166 4973-4980
  • 33 Zheng XX, Steele AW, Hancock WW, Stevens AC, Nickerson PW, Roy-Chaudhury P, Tian Y, Strom TB. A noncytolytic IL-10/Fc fusion protein prevents diabetes, blocks autoimmunity, and promotes suppressor phenomena in NOD mice.  J Immunol. 1997;  158 4507-4513

Correspondence

Hwyda ArafatM.D., Ph.D.·Assistant Professor 

Departments of Surgery Pathology, Anatomy, and Cell Biology

Thomas Jefferson University

1015 Walnut Street

Suite 618 Curtis

Philadelphia

PA 19107

Phone: 215-955-6383

Fax: 215-955-2878

Email: hwyda.arafat@jefferson.edu

    >