J. A. PORCO, JR.,* S. SU, X. LEI, S. BARDHAN, S. D. RYCHNOVSKY (BOSTON UNIVERSITY AND UNIVERSITY OF CALIFORNIA, IRVINE, USA)

Total Synthesis and Structure Assignment of (+)-Hexacyclinol *Angew. Chem. Int. Ed.* **2006**, *45*, 5790-5792.

Synthesis of (+)-Hexacyclinol

Significance: (+)-Hexacyclinol is a metabolite isolated from *Panus rudis* strain HKI 0254 in 2002. The structure of this natural product has been the cause of recent controversy [*Chem. Eng. News* **2006**, *84*(*31*), 11]. A synthesis of the proposed structure (J. La Clair *Angew. Chem. Int. Ed.* **2006**, *45*, 2769-2773) has recently been revised on the basis of calculated ¹³C NMR shifts (S. D. Rychnovsky *Org. Lett.* **2006**, *8*, 2895-2898). This work substantiates the revised structure and relates to a recent biomimetic synthesis of (+)-panepophenanthrin by Porco and co-workers (*Angew. Chem. Int. Ed.* **2003**, *42*, 3913-3917) that amply displays the virtues of biomimetic strategy in natural product synthesis.

Comment: Stille coupling of bromide $\bf B$ and vinyl stannane $\bf C$ gave $\bf D$ that, upon silyl cleavage, underwent Diels—Alder dimerization via $\bf exo$ transition state $\bf E$ to afford $\bf F$. Subsequent treatment with K10 clay induced S_N2' substitution of the allylmethoxy group by the proximal $\bf Re$ face hydroxyl group giving the target.

Reviews: The Stille Reaction, V. Farina, V. Krishnamurthy, W. J. Scott Org. React (N.Y.) 1997, 50, 1-652. Clay and Clay-Supported Reagents in Organic Synthesis, R. S. Varma Tetrahedron 2002, 58, 1235-1255.

Category

Synthesis of Natural Products and Potential Drugs

Key words

Stille reaction

Diels-Alder reaction

acid-catalyzed rearrangement

SYNFACTS Contributors: Philip Kocienski, Thomas Snaddon Synfacts 2007, 2, 0119-0119 Published online: 23.01.2007 DOI: 10.1055/s-2006-955760; Reg-No.: K17106SF