Int J Sports Med 2007; 28(6): 518-524
DOI: 10.1055/s-2006-955896
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

V·O2 Kinetics during Supramaximal Exercise: Relationship with Oxygen Deficit and 800-m Running Performance

L. Bosquet1 , 3 , A. Duchene1 , G. Dupont1 , 2 , L. Leger3 , H. Carter4
  • 1Faculty of Sport Sciences, University of Lille 2, Ronchin, France
  • 2Faculty of Sport Sciences, University of Artois, Liévin, France
  • 3Department of Kinesiology, University of Montreal, Montreal, Canada
  • 4Chelsea School Research Centre, University of Brighton, Eastbourne, United Kingdom
Further Information

Publication History

accepted after revision September 30, 2006

Publication Date:
15 March 2007 (online)

Abstract

The aim of this study was to compare V·O2 kinetics of highly- versus recreationally-trained subjects during a constant velocity test of supramaximal intensity. Eighteen trained male subjects were recruited to one of two groups: highly trained (HT, n = 8, V·O2max = 70.1 ± 6.5 ml · min-1 · kg-1) and recreationally trained (RT, n = 10, V·O2max = 63.2 ± 6.4 ml · min-1 · kg-1). All subjects performed an incremental test to exhaustion for the determination of V·O2max and peak treadmill velocity (PTV), two constant velocity tests at 110 % of PTV to determine V·O2 kinetics and oxygen deficit (O2def), and a 800-m time trial to determine running performance (mean velocity over the distance, V800 m). We found significant differences between HT and RT for the on-transient of the V·O2 response (τ, 24.7 ± 3.3 and 30.9 ± 7.0 s, respectively), the amplitude of the V·O2 response (60.0 ± 5.0 and 53.5 ± 5.7 ml · min-1 · kg-1, respectively) and V800 m (6.27 ± 2.1 and 5.45 ± 0.38 m · s-1, respectively). O2def (24.6 ± 2.7 and 27.7 ± 7.8 ml · kg-1, respectively) and the gain of the V·O2 response (193 ± 14 and 194 ± 13 ml · kg-1 · m-1, respectively) were similar between groups. τ was associated with O2def (r = 0.90, p < 0.05), but not with V800 m (r = 0.30, p > 0.05). It was concluded that HT subjects exhibited faster on-kinetics and higher amplitude than their RT counterparts. The higher amplitude was not thought to reflect any difference in underlying physiological mechanisms. The faster τ, whose exact mechanisms remain to be elucidated, may have practical implications for coaches.

References

  • 1 Bangsbo J. Oxygen deficit: a measure of the anaerobic energy production during intense exercise?.  Can J Appl Physiol. 1996;  21 350-363 364-369
  • 2 Bangsbo J, Michalsik L, Petersen A. Accumulated O2 deficit during intense exercise and muscle characteristics of elite athletes.  Int J Sports Med. 1993;  14 207-213
  • 3 Bell C, Paterson D, Kowalchuk J, Moy A, Thorp D, Noble E, Taylor A, Cunningham D. Determinants of oxygene uptake kinetics in older humans following single-limb endurance exercise training.  Exp Physiol. 2001;  86 659-665
  • 4 Carter H, Pringle J S, Jones A M, Doust J H. Oxygen uptake kinetics during treadmill running across exercise intensity domains.  Eur J Appl Physiol. 2002;  86 347-354
  • 5 Cohen J. Statistical Power Analysis for the Behavioral Sciences. Hillsdale; Lawrence Erlbaum Associates 1988
  • 6 Craig I S, Morgan D W. Relationship between 800-m running performance and accumulated oxygen deficit in middle-distance runners.  Med Sci Sports Exerc. 1998;  30 1631-1636
  • 7 Deason J, Powers S K, Lawler J, Ayers D, Stuart M K. Physiological correlates to 800 meter running performance.  J Sports Med Phys Fitness. 1991;  31 499-504
  • 8 di Prampero P E, Atchou G, Bruckner J C, Moia C. The energetics of endurance running.  Eur J Appl Physiol Occup Physiol. 1986;  55 259-266
  • 9 Draper S B, Wood D M. The oxygen uptake response of sprint- vs. endurance-trained runners to severe intensity running.  J Sci Med Sport. 2005;  8 233-243
  • 10 Draper S B, Wood D M. The V·O2 response for an exhaustive treadmill run at 800-m pace: a breath-by-breath analysis.  Eur J Appl Physiol. 2005;  93 381-389
  • 11 Duffield R, Dawson B, Goodman C. Energy system contribution to 400-metre and 800-metre track running.  J Sports Sci. 2005;  23 299-307
  • 12 Duncan G E, Howley E T, Johnson B N. Applicability of V·O2max criteria: discontinuous versus continuous protocols.  Med Sci Sports Exerc. 1997;  29 273-278
  • 13 Favero T G. Sarcoplasmic reticulum Ca(2+) release and muscle fatigue.  J Appl Physiol. 1999;  87 471-483
  • 14 Elrick R, Gamboa J D, Martin D E, Mora A H, Patterson M, Piqueras M P, Schmidt P, Vittori C. Speed in the 800 metre.  New Studies in Athletics. 1996;  11 (4) 7-22
  • 15 Gandevia S C. Spinal and supraspinal factors in human muscle fatigue.  Physiol Rev. 2001;  81 1725-1789
  • 16 Gastin P B. Energy system interaction and relative contribution during maximal exercise.  Sports Med. 2001;  31 725-741
  • 17 Gerbino A, Ward S A, Whipp B J. Effects of prior exercise on pulmonary gas-exchange kinetics during high-intensity exercise in humans.  J Appl Physiol. 1996;  80 99-107
  • 18 Green H J. Mechanisms of muscle fatigue in intense exercise.  J Sports Sci. 1997;  15 247-256
  • 19 Hagberg J M, Hickson R C, Ehsani A A, Holloszy J O. Faster adjustment to and recovery from submaximal exercise in the trained state.  J Appl Physiol. 1980;  48 218-224
  • 20 Henneman E, Clamann H P, Gillies J D, Skinner R D. Rank order of motoneurons within a pool: law of combination.  J Neurophysiol. 1974;  37 1338-1349
  • 21 Hermansen L. Anaerobic energy release.  Med Sports Sci. 1969;  1 32-38
  • 22 Hill D W, Ferguson C S. A physiological description of critical velocity.  Eur J Appl Physiol Occup Physiol. 1999;  79 290-293
  • 23 Hill D W, Ferguson C S, Ehler K L. An alternative method to determine maximal accumulated O2 deficit in runners.  Eur J Appl Physiol Occup Physiol. 1998;  79 114-117
  • 24 Horowitz J F, Sidossis L S, Coyle E F. High efficiency of type I muscle fibers improves performance.  Int J Sports Med. 1994;  15 152-157
  • 25 Huszczuk A, Whipp B J, Wasserman K. A respiratory gas exchange simulator for routine calibration in metabolic studies.  Eur Respir J. 1990;  3 465-468
  • 26 Jones A, Koppo K. Effect of training on V·O2 kinetics and performance. Jones A, Poole D Oxygen Uptake Kinetics in Sport, Exercise and Medicine. New York; Taylor and Francis 2005: 373-398
  • 27 Juel C. Potassium and sodium shifts during in vitro isometric muscle contraction, and the time course of the ion-gradient recovery.  Pflugers Arch. 1986;  406 458-463
  • 28 Klitgaard H, Bergman O, Betto R, Salviati G, Schiaffino S, Clausen T, Saltin B. Co-existence of myosin heavy chain I and II a isoforms in human skeletal muscle fibers with endurance training.  Eur J Physiol. 1990;  416 470-472
  • 29 Koppo K, Bouckaert J, Jones A M. Effects of training status and exercise intensity on phase II VO2 kinetics.  Med Sci Sports Exerc. 2004;  36 225-232
  • 30 Kuipers H, Verstappen F T, Keizer H A, Geurten P, van Kranenburg G. Variability of aerobic performance in the laboratory and its physiologic correlates.  Int J Sports Med. 1985;  6 197-201
  • 31 Lacour J R, Padilla-Magunacelaya S, Chatard J C, Arsac L, Barthelemy J C. Assessment of running velocity at maximal oxygen uptake.  Eur J Appl Physiol Occup Physiol. 1991;  62 77-82
  • 32 Medbo J I, Mohn A C, Tabata I, Bahr R, Vaage O, Sejersted O M. Anaerobic capacity determined by maximal accumulated O2 deficit.  J Appl Physiol. 1988;  64 50-60
  • 33 Millet G P, Libicz S, Borrani F, Fattori P, Bignet F, Candau R. Effects of increased intensity of intermittent training in runners with differing V·O2 kinetics.  Eur J Appl Physiol. 2003;  90 50-57
  • 34 Morgan D W, Baldini F D, Martin P E, Kohrt W M. Ten kilometer performance and predicted velocity at VO2max among well-trained male runners.  Med Sci Sports Exerc. 1989;  21 78-83
  • 35 Olesen H L, Raabo E, Bangsbo J, Secher N H. Maximal oxygen deficit of sprint and middle distance runners.  Eur J Appl Physiol Occup Physiol. 1994;  69 140-146
  • 36 Ozyener F, Rossiter H B, Ward S A, Whipp B J. Influence of exercise intensity on the on- and off-transient kinetics of pulmonary oxygen uptake in humans.  J Physiol. 2001;  533 891-902
  • 37 Padilla S, Bourdin M, Barthelemy J C, Lacour J R. Physiological correlates of middle-distance running performance. A comparative study between men and women.  Eur J Appl Physiol Occup Physiol. 1992;  65 561-566
  • 38 Ross A, Leveritt M. Long-term metabolic and skeletal muscle adaptations to short-sprint training: implications for sprint training and tapering.  Sports Med. 2001;  31 1063-1082
  • 39 Saltin B, Bangsbo J, Graham T, Johansen L. Metabolism and performance in exhaustive intense exercise; different effects of muscle glycogen availability, previous exercise and muscle acidity. Marconnet P, Komi P, Saltin B Muscle Fatigue Mechanisms in Exercise and Training. Basel; Karger 1992: 87-114
  • 40 Scheuermann B W, Barstow T J. O2 uptake kinetics during exercise at peak O2 uptake.  J Appl Physiol. 2003;  95 2014-2022
  • 41 Scott C B, Roby F B, Lohman T G, Bunt J C. The maximally accumulated oxygen deficit as an indicator of anaerobic capacity.  Med Sci Sports Exerc. 1991;  23 618-624
  • 42 Sejersted O M, Sjogaard G. Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise.  Physiol Rev. 2000;  80 1411-1481
  • 43 Sieck G C, Prakash Y S. Fatigue at the neuromuscular junction. Branch point vs. presynaptic vs. postsynaptic mechanisms.  Adv Exp Med Biol. 1995;  384 83-100
  • 44 Smith D O. Morphological aspects of the safety factor for action potential propagation at axon branch points in the crayfish.  J Physiol. 1980;  301 261-269
  • 45 Spencer M R, Gastin P B. Energy system contribution during 200- to 1500-m running in highly trained athletes.  Med Sci Sports Exerc. 2001;  33 157-162
  • 46 Thomas C, Hanon C, Perrey S, Le Chevalier J M, Couturier A, Vandewalle H. Oxygen uptake response to an 800-m running race.  Int J Sports Med. 2005;  26 268-273
  • 47 Wasserman K, Whipp B J, Koyl S N, Beaver W L. Anaerobic threshold and respiratory gas exchange during exercise.  J Appl Physiol. 1973;  35 236-243
  • 48 Whipp B J, Ward S A, Wasserman K. Respiratory markers of the anaerobic threshold.  Adv Cardiol. 1986;  35 47-64
  • 49 Whipp B J, Wasserman K. Oxygen uptake kinetics for various intensities of constant-load work.  J Appl Physiol. 1972;  33 351-356

Laurent Bosquet

Department of Kinesiology
University of Montreal

CP 6128, succ. centre ville

Montreal

Canada H3C 3J7

Phone: + 51 43 43 89 49

Fax: + 51 43 43 21 81

Email: laurent.bosquet@umontreal.ca

    >