Horm Metab Res 2008; 40(2): 75-81
DOI: 10.1055/s-2007-1022554
Review

© Georg Thieme Verlag KG Stuttgart · New York

Killer Dendritic Cells and their Potential Role in Immunotherapy

E. Ullrich 1 , 2 , N. Chaput 1 , 2 , 3 , L. Zitvogel 1 , 2 , 3 , 4
  • 1Institut Gustave Roussy, Villejuif, France
  • 2INSERM, U805, Villejuif, France
  • 3Center of Clinical Investigation CBT507, Biotherapy, Villejuif, France
  • 4Université Paris-Sud, Villejuif, France
Further Information

Publication History

received 04.10.2007

accepted 25.10.2007

Publication Date:
19 February 2008 (online)

Abstract

Tumor immunosurveillance is mediated by innate and adaptive components of cellular immunity. A complex network of cellular interactions is needed to elicit protective antitumoral CD4+and CD8+T cell responses. Thereby dendritic cells (DCs) play a central role as professional antigen presenting cells (APCs) that take up antigens, process, and present them to prime naïve T cells. Recognition and lysis of tumor cells has been attributed to innate effectors such as natural killer (NK), NKT and γδT cells. Recently, novel subsets of cytotoxic DCs, called “killer DCs” (KDCs), have been reported in rodents and humans. Killer dendritic cells could directly link innate and adaptive immunity. This review aims at comparing the different KDC populations, their phenotypes, killer function, and their potential application for anticancer immunotherapy.

References

  • 1 Ehrlich P. Über den jetztigen Stand der Karzinomforschung.  Ned Tijdschr Geneeskd. 1909;  5 ((1)) 273-290
  • 2 Burnet M. Cancer; a biological approach. I. The processes of control.  Br Med J. 1957;  1 ((5022)) 779-786
  • 3 Burnet FM. The concept of immunological surveillance.  Prog Exp Tumor Res. 1970;  13 1-27
  • 4 Smyth MJ, Dunn GP, Schreiber RD. Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity.  Adv Immunol. 2006;  90 1-50
  • 5 Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution.  J Exp Med. 1973;  137 1142-1162
  • 6 Steinman RM, Banchereau J. Taking dendritic cells into medicine.  Nature. 2007;  449 ((7161)) 419-426
  • 7 Banchereau J, Steinman RM. Dendritic cells and the control of immunity.  Nature. 1998;  392 ((6673)) 245-252
  • 8 Pulendran B, Smith JL, Caspary G, Brasel K, Pettit D, Maraskovsky E. et al . Distinct dendritic cell subsets differentially regulate the class of immune response in vivo.  Proc Natl Acad Sci USA. 1999;  96 1036-1041
  • 9 Maldonado-Lopez R, Smedt T De, Michel P, Godfroid J, Pajak B, Heirman C. et al . CD8alpha+ and CD8alpha- subclasses of dendritic cells direct the development of distinct T helper cells in vivo.  J Exp Med. 1999;  189 587-592
  • 10 Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells.  Nat Immunol. 2005;  6 769-776
  • 11 Seder RA, Paul WE, Davis MM, Fazekas de St GB. The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice.  J Exp Med. 1992;  176 1091-1098
  • 12 LeibundGut-Landmann S, Gross O, Robinson MJ, Osorio F, Slack EC, Tsoni SV. et al . Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17.  Nat Immunol. 2007;  8 630-638
  • 13 Luo X, Tarbell KV, Yang H, Pothoven K, Bailey SL, Ding R. et al . Dendritic cells with TGF-beta1 differentiate naive CD4+.  Proc Natl Acad Sci USA. 2007;  104 2821-2826
  • 14 Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH. Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells.  J Exp Med. 2000;  192 1213-1222
  • 15 Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M. et al . Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo.  J Exp Med. 2001;  194 769-779
  • 16 Probst HC, MacCoy K, Okazaki T, Honjo T, van den BM. Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4.  Nat Immunol. 2005;  6 280-286
  • 17 Jego G, Pascual V, Palucka AK, Banchereau J. Dendritic cells control B cell growth and differentiation.  Curr Dir Autoimmun. 2005;  8 124-139
  • 18 Fernandez NC, Lozier A, Flament C, Ricciardi-Castagnoli P, Bellet D, Suter M. et al . Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo.  Nat Med. 1999;  5 405-411
  • 19 Kadowaki N, Antonenko S, Ho S, Rissoan MC, Soumelis V, Porcelli SA. et al . Distinct cytokine profiles of neonatal natural killer T cells after expansion with subsets of dendritic cells.  J Exp Med. 2001;  193 1221-1226
  • 20 Schuler G, Schuler-Thurner B, Steinman RM. The use of dendritic cells in cancer immunotherapy.  Curr Opin Immunol. 2003;  15 138-147
  • 21 Schott M. Immunesurveillance by dendritic cells: potential implication for immunotherapy of endocrine cancers.  Endocr Relat Cancer. 2006;  13 779-795
  • 22 Ullrich E, Menard C, Flament C, Terme M, Mignot G, Bonmort M. et al . Dendritic cells and innate defense against tumor cells.  Cytokine Growth Factor Rev. 2007;  doi: 10.1016/j. cytogfr. 2007. 10. 009
  • 23 Ghiringhelli F, Apetoh L, Housseau F, Kroemer G, Zitvogel L. Links between innate and cognate tumor immunity.  Curr Opin Immunol. 2007;  19 224-231
  • 24 Ullrich E, Bonmort M, Mignot G, Kroemer G, Zitvogel L. Tumor stress, cell death and the ensuing immune response.  Cell Death Differ. 2008;  15 21-28
  • 25 Wesa A, Storkus WJ. Killer dendritic cells: Mechanisms of action and therapeutic implications for cancer.  Cell Death Differ. 2008;  15 51-57
  • 26 Shortman K, Naik SH. Steady-state and inflammatory dendritic-cell development.  Nat Rev Immunol. 2007;  7 19-30
  • 27 Blanco P, Palucka AK, Gill M, Pascual V, Banchereau J. Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus.  Science. 2001;  294 ((5546)) 1540-1543
  • 28 Nestle FO, Conrad C, Tun-Kyi A, Homey B, Gombert M, Boyman O. et al . Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production.  J Exp Med. 2005;  202 135-143
  • 29 Shortman K, Liu YJ. Mouse and human dendritic cell subtypes.  Nat Rev Immunol. 2002;  2 151-161
  • 30 Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C, Yamazaki S. et al . Differential antigen processing by dendritic cell subsets in vivo.  Science. 2007;  315 ((5808)) 107-111
  • 31 Soares H, Waechter H, Glaichenhaus N, Mougneau E, Yagita H, Mizenina O. et al . A subset of dendritic cells induces CD4+ T cells to produce IFN-gamma by an IL-12-independent but CD70-dependent mechanism in vivo.  J Exp Med. 2007;  204 1095-1106
  • 32 Kissenpfennig A, Malissen B. Langerhans cells-revisiting the paradigm using genetically engineered mice.  Trends Immunol. 2006;  27 132-139
  • 33 Suss G, Shortman K. A subclass of dendritic cells kills CD4T cells via Fas/Fas-ligand-induced apoptosis.  J Exp Med. 1996;  183 1789-1796
  • 34 Lu L, Qian S, Hershberger PA, Rudert WA, Lynch DH, Thomson AW. Fas ligand (CD95L) and B7 expression on dendritic cells provide counter-regulatory signals for T cell survival and proliferation.  J Immunol. 1997;  158 5676-5684
  • 35 Shibaki A, Katz SI. Activation through CD40 ligation induces functional Fas ligand expression by Langerhans cells.  Eur J Immunol. 2001;  31 3006-3015
  • 36 Josien R, Heslan M, Soulillou JP, Cuturi MC. Rat spleen dendritic cells express natural killer cell receptor protein 1 (NKR-P1) and have cytotoxic activity to select targets via a Ca2+-dependent mechanism.  J Exp Med. 1997;  186 467-472
  • 37 Trinite B, Voisine C, Yagita H, Josien R. A subset of cytolytic dendritic cells in rat.  J Immunol. 2000;  165 4202-4208
  • 38 Trinite B, Chauvin C, Peche H, Voisine C, Heslan M, Josien R. Immature CD4- CD103+ rat dendritic cells induce rapid caspase-independent apoptosis-like cell death in various tumor and nontumor cells and phagocytose their victims.  J Immunol. 2005;  175 2408-2417
  • 39 Alli R, Savithri B, Das S, Varalakshmi C, Rangaraj N, Khar A. Involvement of NKR-P2/NKG2D in DC-mediated killing of tumor targets: indicative of a common, innate, target-recognition paradigm?.  Eur J Immunol. 2004;  34 1119-1126
  • 40 Srivastava RM, Varalakshmi C, Khar A. Cross-linking a mAb to NKR-P2/NKG2D on dendritic cells induces their activation and maturation leading to enhanced anti-tumor immune response.  Int Immunol. 2007;  19 591-607
  • 41 Homann D, Jahreis A, Wolfe T, Hughes A, Coon B, Stipdonk MJ van. et al . CD40L blockade prevents autoimmune diabetes by induction of bitypic NK/DC regulatory cells.  Immunity. 2002;  16 403-415
  • 42 Pillarisetty VG, Katz SC, Bleier JI, Shah AB, Dematteo RP. Natural killer dendritic cells have both antigen presenting and lytic function and in response to CpG produce IFN-gamma via autocrine IL-12.  J Immunol. 2005;  174 2612-2618
  • 43 Taieb J, Chaput N, Menard C, Apetoh L, Ullrich E, Bonmort M. et al . A novel dendritic cell subset involved in tumor immunosurveillance.  Nat Med. 2006;  12 214-219
  • 44 Chan CW, Crafton E, Fan HN, Flook J, Yoshimura K, Skarica M. et al . Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity.  Nat Med. 2006;  12 207-213
  • 45 Chaudhry UI, Kingham TP, Plitas G, Katz SC, Raab JR, Dematteo RP. Combined stimulation with interleukin-18 and CpG induces murine natural killer dendritic cells to produce IFN-{gamma} and inhibit tumor growth.  Cancer Res. 2006;  66 10497-10504
  • 46 Shortman K, Villadangos JA. Is it a DC, is it an NK? No, it's an IKDC.  Nat Med. 2006;  12 167-168
  • 47 Ullrich E, Bonmort M, Mignot G, Chaput N, Taieb J, Menard C. et al . Therapy-induced tumor immunosurveillance involves IFN-producing killer dendritic cells.  Cancer Res. 2007;  67 851-853
  • 48 Vremec D, O’Keeffe M, Hochrein H, Fuchsberger M, Caminschi I, Lahoud M. et al . Production of interferons by dendritic cells, plasmacytoid cells, natural killer cells and interferon-producing killer dendritic cells.  Blood. 2007;  109 1165-1173
  • 49 Bonmort M, Ullrich E, Mignot G, Chaput N, Zitvogel L. Interferon-gamma is produced by another player of immune responses: the interferon-producing killer dendritic cell (IKDC).  Biochimie. 2007;  89 872-877
  • 50 Huang J, Tatsumi T, Pizzoferrato E, Vujanovic N, Storkus WJ. Nitric oxide sensitizes tumor cells to dendritic cell-mediated apoptosis, uptake, and cross-presentation.  Cancer Res. 2005;  65 8461-8470
  • 51 Tatsumi T, Huang J, Gooding WE, Gambotto A, Robbins PD, Vujanovic NL. et al . Intratumoral delivery of dendritic cells engineered to secrete both interleukin (IL)-12 and IL-18 effectively treats local and distant disease in association with broadly reactive Tc1-type immunity.  Cancer Res. 2003;  63 6378-6386
  • 52 Srivastava RM, Varalakshmi C, Khar A. Cross-linking a mAb to NKR-P2/NKG2D on dendritic cells induces their activation and maturation leading to enhanced anti-tumor immune response.  Int Immunol. 2007;  19 591-607
  • 53 Liu YJ. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity.  Cell. 2001;  106 259-262
  • 54 MacDonald KP, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DN. Characterization of human blood dendritic cell subsets.  Blood. 2002;  100 4512-4520
  • 55 Randolph GJ, Sanchez-Schmitz G, Liebman RM, Schakel K. The CD16(+) (FcgammaRIII(+)) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting.  J Exp Med. 2002;  196 517-527
  • 56 Schakel K, Mayer E, Federle C, Schmitz M, Riethmuller G, Rieber EP. A novel dendritic cell population in human blood: one-step immunomagnetic isolation by a specific mAb (M-DC8) and in vitro priming of cytotoxic T lymphocytes.  Eur J Immunol. 1998;  28 4084-4093
  • 57 Schakel K, Kannagi R, Kniep B, Goto Y, Mitsuoka C, Zwirner J. et al . 6-Sulfo LacNAc, a novel carbohydrate modification of PSGL-1, defines an inflammatory type of human dendritic cells.  Immunity. 2002;  17 289-301
  • 58 Fanger NA, Maliszewski CR, Schooley K, Griffith TS. Human dendritic cells mediate cellular apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).  J Exp Med. 1999;  190 1155-1164
  • 59 Janjic BM, Lu G, Pimenov A, Whiteside TL, Storkus WJ, Vujanovic NL. Innate direct anticancer effector function of human immature dendritic cells. I. Involvement of an apoptosis-inducing pathway.  J Immunol. 2002;  168 1823-1830
  • 60 Lu G, Janjic BM, Janjic J, Whiteside TL, Storkus WJ, Vujanovic NL. Innate direct anticancer effector function of human immature dendritic cells. II. Role of TNF, lymphotoxin-alpha(1)beta(2), Fas ligand, and TNF-related apoptosis-inducing ligand.  J Immunol. 2002;  168 1831-1839
  • 61 Schmitz M, Zhao S, Deuse Y, Schakel K, Wehner R, Wohner H. et al . Tumoricidal potential of native blood dendritic cells: direct tumor cell killing and activation of NK cell-mediated cytotoxicity.  J Immunol. 2005;  174 4127-4134
  • 62 Schmitz M, Zhao S, Schakel K, Bornhauser M, Ockert D, Rieber EP. Native human blood dendritic cells as potent effectors in antibody-dependent cellular cytotoxicity.  Blood. 2002;  100 1502-1504
  • 63 Stary G, Bangert C, Tauber M, Strohal R, Kopp T, Stingl G. Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells.  J Exp Med. 2007;  204 1441-1451
  • 64 Vanderheyde N, Aksoy E, Amraoui Z, Vandenabeele P, Goldman M, Willems F. Tumoricidal activity of monocyte-derived dendritic cells: evidence for a caspase-8-dependent, Fas-associated death domain-independent mechanism.  J Immunol. 2001;  167 3565-3569
  • 65 Vanderheyde N, Vandenabeele P, Goldman M, Willems F. Distinct mechanisms are involved in tumoristatic and tumoricidal activities of monocyte-derived dendritic cells.  Immunol Lett. 2004;  91 99-101
  • 66 Vidalain PO, Azocar O, Yagita H, Rabourdin-Combe C, Servet-Delprat C. Cytotoxic activity of human dendritic cells is differentially regulated by double-stranded RNA and CD40 ligand.  J Immunol. 2001;  167 3765-3772
  • 67 Yang R, Xu D, Zhang A, Gruber A. Immature dendritic cells kill ovarian carcinoma cells by a FAS/FASL pathway, enabling them to sensitize tumor-specific CTLs.  Int J Cancer. 2001;  94 407-413
  • 68 Chapoval AI, Tamada K, Chen L. In vitro growth inhibition of a broad spectrum of tumor cell lines by activated human dendritic cells.  Blood. 2000;  95 2346-2351
  • 69 Shi J, Ikeda K, Fujii N, Kondo E, Shinagawa K, Ishimaru F. et al . Activated human umbilical cord blood dendritic cells kill tumor cells without damaging normal hematological progenitor cells.  Cancer Sci. 2005;  96 127-133
  • 70 Liu S, Yu Y, Zhang M, Wang W, Cao X. The involvement of TNF-alpha-related apoptosis-inducing ligand in the enhanced cytotoxicity of IFN-beta-stimulated human dendritic cells to tumor cells.  J Immunol. 2001;  166 5407-5415
  • 71 Korthals M, Safaian N, Kronenwett R, Maihofer D, Schott M, Papewalis C. et al . Monocyte derived dendritic cells generated by IFN-alpha acquire mature dendritic and natural killer cell properties as shown by gene expression analysis.  J Transl Med. 2007;  5 46
  • 72 Triozzi PL, Khurram R, Aldrich WA, Walker MJ, Kim JA, Jaynes S. Intratumoral injection of dendritic cells derived in vitro in patients with metastatic cancer.  Cancer. 2000;  89 2646-2654

Correspondence

L. ZitvogelMD, PhD 

U805 INSERM and CBT507

Center of Clinical Investigations

Institut Gustave Roussy

39 rue Camille Desmoulins

94805 Villejuif

France

Phone: +33/1/42 11 50 41

Fax: +33/1/42 11 60 94

Email: zitvogel@igr.fr

    >