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         The Non-neuronal Cholinergic System of Human Skin    

bits  [7]  and today, ACh production and expres-
sion of its receptors have been shown in a wide 
variety of organisms from protozoa and plants to 
humans, thus supporting the hypothesis that 
ACh is a universal cytotransmitter which has only 
secondarily become specialized in the nervous 
system. In humans, different tegumental cells 
covering the inner and outer surfaces of the 
human body and most notably various immune 
cells are part of the non-neuronal cholinergic 
system  [8] . 
 The non-neuronal cholinergic system has been 
implicated in numerous functions in the skin 
such as growth and differentiation, adhesion and 
motility, barrier formation, sweat and sebum 
secretion as well as modulation of the microcir-
culation. An important role in human disease, 
especially in infl ammatory disorders such as 
acne vulgaris or atopic eczema is emerging 
together with a wealth of new data on its physi-
ological role in maintaining skin homeostasis 
 [4,   9] . In human skin both resident and tran-
siently residing cells are part of this system, cre-
ating a highly complex and interconnected 
cosmos in which ACh is the main player with 
regulatory roles in both physiology and patho-
physiology  [10] . The aim of this review is to pro-
vide insights into basic mechanisms of ACh action 

 Introduction 
  &  
 Numerous studies performed in recent years 
have fi rmly established the human skin as not 
only a target but also an active source of various 
neurotransmitters and hormones. The extra- or 
non-neuronal adrenergic and cholinergic sys-
tems have begun to attract increasing attention 
as regulators of skin physiology and pathophysi-
ology  [1 – 4] . 
 In 1921 Otto Loewi and Henry Dale identifi ed 
acetylcholine (ACh) as a principal neurotransmit-
ter, a discovery that was rewarded with the Nobel 
prize for physiology and medicine in 1936. In the 
following years, most advances were made by 
the description of ACh action in the central nerv-
ous system and by the characterization of its 
nicotinic (nAChR) and muscarinic (mAChR) 
receptors  [5] . ACh is synthesized from choline 
and coenzyme A by choline acetyltransferase 
(ChAT), which is the rate-limiting step in ACh  de 
novo  synthesis and it is degraded by acetylcho-
linesterase (AChE). The fi rst hint towards a non-
neuronal production of ACh in the skin came in 
1983 from studies on salivary glands of rats, 
which continued to produce large amounts of 
ACh despite prior denervation  [6] . Six years later 
ACh production was found in blood cells of rab-
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  Abstract 
  &  
 In human skin both resident and transiently 
residing cells are part of the extra- or non-neuro-
nal cholinergic system, creating a highly complex 
and interconnected cosmos in which acetylcho-
line (ACh) and choline are the natural ligands of 
nicotinic and muscarinic receptors with regu-
latory function in both physiology and patho-
physiology. ACh is produced in keratinocytes, 
endothelial cells and most notably in immune 
competent cells invading the skin at sites of 

infl ammation. The cholinergic system is involved 
in basic functions of the skin through autocrine, 
paracrine, and endocrine mechanisms, like kerat-
inocyte proliferation, differentiation, adhesion 
and migration, epidermal barrier formation, pig-
ment-, sweat- and sebum production, blood cir-
culation, angiogenesis, and a variety of immune 
reactions. The pathophysiological consequences 
of this complex cholinergic  “ concert ”  are only 
beginning to be understood. The present review 
aims at providing insight into basic mechanisms 
of this highly complex system.         
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and shed light into possible interconnections of the different 
components of the non-neuronal cholinergic system of the skin.   

 Pharmacology of AChR 
  &  
 Hitherto, fi ve molecular subtypes of muscarinic AChR, M 1 -M 5 , 
have been identifi ed. These receptors are single subunit trans-
membrane glycoproteins of which the M 2  and M 4  are coupled to 
G-proteins of the G i  family, leading to inhibition of cAMP syn-
thesis. The M 1 , M 3  and M 5  subtypes are coupled to the Gq class 
of the G-proteins acting on down- stream signals such as phos-
pholipase C or D, consequently regulating intracellular calcium 
levels  [11] . 
 Human nicotinic nAChR are composed of different subunits, i.e. 
 � 1 –  � 10,  � 1 –  � 4,  � ,  �  and  � , which can be combined to pharmaco-
logically distinct pentameric ion channels. The  � 1,  � 1 and  �  
chains form heteropentamers present at the neuromuscular 
junction together with the  �  (fetal phenotype), and  �  (adult phe-
notype) chains. The neuronal heteropentamers that contain the 
 � 3 subunit together with other subunits are also termed  � 3  *   
nAChR. The  � 7 and  � 9 subunits form homopentamers and are 
mainly gating calcium while the  � 3  *   nAChR are sodium and / or 
potassium channels  [12] . It has been suggested that  � 9 subunits 
may form heteromeric nAChR together with  � 10 subunits  [13] . 
Depending on their subunit composition, the nAChR show dif-
ferent affi nities for ACh, choline and other cholinergic com-
pounds like nicotine. Both ACh and choline have been shown to 
activate the M 3  AChR while all other mAChR are physiologically 
activated only by ACh  [14] . Of the nAChR, the  � 7 and  � 9 homo-
pentamers are activated by choline, but not the  � 3  *   nAChR (  Table 
1  ). In the past, the question of agonist or antagonist AChR sub-
type selectivity has contributed considerably to confusion in 
AChR research. For example, atropine has been viewed as a clas-
sical antimuscarinergic substance. Recent studies, however, 
have demonstrated that nAChRs are also inhibited by atropine, 
in the rank order  � 9> � 7> � 3 nAChR  [15,   16] . The  � 9 /  � 10-nAChRs 
behave pharmacologically distinct and can be activated neither 

by nicotine nor muscarine. These classical cholinergic agonists 
reduce the ACh effects at the  � 9-nAChR. Like the  � 7-nAChR, the 
 � 9 /  � 10-nAChRs can be blocked by  � -bungarotoxin and like the 
mAChR they can be blocked by atropine. Similar to the AChR 
present at the neuromuscular junction ( �  �  �  � -nAChR) they can be 
blocked by strychnine  [1,   17 – 20] . In addition, along with their 
classical orthosteric binding site for ACh and competetive antag-
onists, mAChRs possess a second, allosteric binding site. Allos-
teric binding modulates the action of ligands at the orthosteric 
binding site. This process is designated positive or negative 
cooperativity. Gallamine is one of the fi rst substances with 
proven negative cooperativity at the mAChRs. Strychnine, a 
potent inhibitor of glycine receptors and of the  � 1 and  � 9 nAChRs, 
has been shown to exert positive cooperativity with  N -scopo-
lamine (a competitive mAChR inhibitor) at the M 2  and M 4  AChRs 
and a negative cooperativity with ACh at the M 2  and M 3  AChRs 
 [21] . In addition, strychnine has also been shown to activate at 
least the M 2  and M 4  AChRs at the allosteric binding site inde-
pendent of natural ligands  [22] . This complex binding and acti-
vation pattern that can be found for several cholinergic 
substances and explains different effects of the same substance 
on the same cells, dependent on the presence or absence of nat-
ural or synthetic agonists and antagonists  [21 – 23] . Because of 
the described highly complex actions and interactions of cholin-
ergic substances, older pharmacological studies have to be inter-
preted cautiously. Using antimuscarinergic substances, it has to 
be kept in mind that the so called  “ selective ”  binding is lost, if 
higher concentrations of the respective antagonist are applied. 
Recent studies using antisense oligonucleotides or siRNA 
approaches have tried to circumvent these diffi culties  [24,   25] . 
The different pharmacological properties of commonly used 
cholinergic agonists and antagonists are summarized in   Table 1  .   

 Is endocrine action of ACh mediated via choline? 
  &  
 In the body, choline serves several biological functions. It is the 
precursor of phosphatidylcholine and sphingomyelin, two phos-

   Table 1       AChR selectivity of cholinergic ligands (modifi ed from Alexander et al.  [121,   122] ) 

   Nomenclature  Agonists  Antagonists 

 nAChR    subunits  ACh, CCh   
 Heterooligomers   � 1  *     �  �  �  �   ACh, CCh, Epi   � Btx, Tub, Str, Suc, Dec Hex 
    � 3  *     � 3 � 2    ±     � 5  Epi    >    Nic    >    ACh   � Btx    >    Hex, CtxMII    >    Mec    >    Tub    >    Atrop 
      � 3 � 4    ±     � 5  Epi    >    Cyt    =    Nic    >    ACh   � Btx, Hex CtxAuIB    >    Mec    >    Tub 
    � 4  *     � 4( � 2 /  � 4)    ±     � 5  Epi    >    Cyt    =    Sub  D � E    >    Tub    >    Mec 
    � 10 � 9   � 10 � 9  ACh   � Btx    >    Str Atrop, Nic, Mus 
 Homooligomers   � 7  *     � 7 5   Cho    >    Nic  KyA    >     � Btx    >    Str 
    � 9  *     � 9 5   Cho    >    ACh   � Btx    >    Str, Atrop, Nic, Mus 
 mAChR      ACh, CCh, Mus, Met  Atrop, Scop 
   M 1     AC-42, Des  Gly (11), MT7 (9.8), 4-DAMP (9.2) Trip (8.8), Pzp (8.5) 
   M 2     BCh  Trip (9.4), AFDX384 (9.0), Hmn (8.3), 4-DAMP (8.4), Pzp (6.7) 
   M 3     Cho, L-689  Gly (11), 4-DAMP (9.3), Dar (8.9), Hmn (6.4), Tio (kinetic 

selectivity), 
   M 4     McN-A343  4-DAMP (9.4), Hmn (8.8), MT3 (8.7), Pzp (8.1), Dar (8.0) 
   M 5     Mus    >    ACh  4-DAMP (9.0), Dar (8.1), Pzp (7.1) 

       ACh: acetylcholine; Atrop: atropine, BCh: bethanechol;  � Btx:  � -bungarotoxin;  � Btx,  � -bungarotoxin; CCh: carbachol; Cho: choline, Ctx:  � -conotoxin; Cyt: cytisine; Dar: darifenacine; 

Dec: decamethonium; D � E: dihidro- � -erythroidine; Des: desmethylclozapine; Epi: epibatidine; Gly: glycopyrrolate; Hex: hexamethonium; Hmn: himbacine; KyA: kynurenic acid; 

Mec: mecamylamine; Mus: muscarine; Met: metacholine; MT3 and MT7: mamba toxins 3 and 7; Nic: nicotine; Pil: pilocarpine; Pzp: pirenzepine; Scop: scopolamine; Sub: suberyl-

dicholine; Suc: succinylcholine; Str: strychnine; Tio: tiotropium: Tub: d-tubocurarine. Values in parantheses denote antagonist apparent affi nities (pKB). Glycopyrrolate selectivity 

according to Haddad et al.  [123] . Kinetic selectivity of tiotropium at the M 3  according to Disse et al.  [115] . A convincing subtype selectivity for muscarinic agonists has so far not 

been established.   
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pholipids that serve as components of biological membranes 
and as precursors for intracellular messengers such as diacylg-
lycerol or ceramide. Choline is also the precursor of ACh and two 
signaling lipids, platelet-activating factor and sphingosylphos-
phorylcholine. Furthermore, choline can be enzymatically 
degraded to betaine and H 2 O 2  via choline oxidase. The methyl 
groups of betaine may then used to resynthesize methionine 
from homocysteine, thereby providing methionine for protein 
synthesis and transmethylation reactions  [4,   26] . Activation of 
AChRs through choline provides the basis for an endocrine 
action, while ACh itself is degraded rapidly through AChE, thus 
acting only in an autocrine or paracrine manner. Choline, usually 
as part of phosphatidylcholine, is widely available in a number 
of foods. Dietary intake of choline ranges from 300 to 900   mg a 
day and the mean serum free choline level is  ~ 35    � M at birth and 
gradually decreases to  ~ 10    � M after birth  [27] . Choline fi ts the 
original description of a vitamin and is classifi ed today as an 
essential nutrient  [26] . In many mammals, long term (weeks to 
months) ingestion of a diet defi cient in choline is adequate, 
however, when limited to methionine and folate leads to hepatic, 
renal, pancreatic, memory, and growth disorders. Muscle dam-
age also occurs from choline defi ciency  [28,   29] . 
 Mammalian cells in culture require choline for cell division and 
without it die by apoptosis. Apoptosis-induction via choline 
defi ciency has also been observed in liver epithelial cells where 
it is associated with cell-cycle arrest and upregulation of p53 
and p21 WAF1 / CIP1  as well as with persistent activation of NF- � B. 
This interesting fi nding has been interpreted as a possible 
molecular mechanism by which choline defi ciency may promote 
carcinogenesis  [30] . Hypercholinemia has been found to indi-
cate a poor prognosis in patients with acute coronary syndrome. 
The source of choline whole blood elevation has not been deter-
mined and needs further research  [31] . Probably because of the 
hitherto underestimated endocrine action of choline on AChR 
present in the different non-neuronal cholinergic systems, there 
are no reports on the effects of choline defi ciency or choline 
excess on skin physiology or the immune system. It has been 
recently demonstrated that choline is chemotactic to human 
epidermal keratinocytes  [24] , and that its downstream signaling 
of keratinocyte  � 7 AChR, which involves the Ras / Raf-1 / MEK1 /
 ERK pathway coupled to integrin expression, mediates choliner-
gic regulation of keratinocyte directional migration  [24] . It 
remains to be determined which sources are mainly responsible 
for choline present in blood and tissues in different physiologi-
cal and pathological situations and whether variations in choline 
concentration indeed infl uence signaling of the different non-
neuronal cholinergic systems.   

 Impact of ACh on keratinocyte biology 
  &  
 As for other kinds of tegumental cells, resident skin cells like 
keratinocytes synthesize and degrade ACh  [32] . While the  � 2,  � 4, 
 � 6,  � 3   nAChR s  have never been demonstrated in human skin, 
several studies have identifi ed the presence of  � 3,  � 5,  � 7,  � 9,  � 10, 
 � 2 and  � 4 nAChR. In addition, the presence of  � 1 nAChR mRNA 
and protein was shown only recently  [9,   18,   20,   33,   ] . There seems 
to be a highly variable expression of the nAChR in the epidermis, 
especially of the heterooligomeric species of the  � 3  *  -type. Puta-
tive infl uencing factors include age, atopic disposition, smoking 
habits or minimal trauma. Differences in body site may also 
explain contrasting results obtained with the same antibodies 

(e.g. anti- � 3, - � 2) by different authors. Based on in situ hybridi-
zation and double-label immunofl uorescence, the  � 3,  � 5,  � 2 and 
 � 4 nAChR subunits have been demonstrated in the epidermal 
basal layer and   –   to a variable extent  –  in a single cell layer in the 
stratum granulosum .  The homo-oligomeric nAChR subunits  � 7 
and  � 9 show a clearly distinct distribution within the epidermis. 
While the  � 9 AChR are prominent in the basal layer and lowest 
suprabasal layers, the  � 7 AChR can be found in the upper stra-
tum spinosum and in the stratum granulosum, co - localizing 
with the  � 10 and  � 1 chain. It is unclear at present whether the  � 1 
chain, alone or together with other subunits, can form a func-
tional AChR receptor in the epidermis. The  � 9 and  � 10 subunits 
form functional AChR s  in various organs  [13,   34] . However, in 
the epidermis  � 10 expression parallels  � 7 and  � 1 expression 
rather than  � 9 nAChR subunit expression. In the other compart-
ments of the skin, there is a complete dissociation of the expres-
sion patterns for these four subunits (i.e.  � 7,  � 9,  � 10 and  � 1), 
indicating that either  � 10 might be able to form functional recep-
tors with different subunits, or that  � 10 like  � 1 might be able to 
form functional receptors on its own. However, this has never 
been demonstrated in vitro. Of the mAChR, M 1  and M 4  were 
found in the suprabasal layers, while M 2 , M 3  and M 5  remained 
restricted to the lower layers  [9,   18,   35] . 
 The functional impact of the observed AChR distribution in the 
epidermis has been examined in a current study  [36]  using orga-
notypic co - cultures (OTC) as an  in vitro  skin equivalent system. 
In this system, blocking of all AChR by combined treatment with 
mecamylamine and atropine or treatment with strychnine 
(which blocks  � 9 nAChR) for 7  –  14 days resulted in complete 
inhibition of epidermal differentiation and proliferation. Block-
age of nAChR with mecamylamine led to a less pronounced 
delay in epidermal differentiation and proliferation than block-
age of muscarinic mAChR with atropine, evidenced by reduced 
epithelial thickness and expression of terminal differentiation 
markers such as CK2e, CK10 or ZO1. In OTCs treated with atro-
pine, mecamylamine or strychnine there was an intracellular 
lipid accumulation already in the lower epidermal layers, indi-
cating metabolic stress and a severely disturbed epidermal bar-
rier. In addition, prominent acantholysis could be observed in 
the basal and lower suprabasal layers in mecamylamine-, atro-
pine- and strychnine-treated cultures, accompanied by a 
decreased expression of desmosomal, adherens junction and 
tight junction proteins. This globally reduced cell adhesion led 
to cell death via intrinsic activation of apoptosis. In contrast, 
stimulation of nAChR>mAChR with cholinergic drugs resulted in 
a signifi cantly thickened epithelium, accompanied by an increase 
of intercellular lipid content in the corneal layer. In this study, it 
was demonstrated that ACh is crucial for the development of a 
stratifi ed epidermis-like epithelium  in vitro , well in line with the 
fact that virtually all keratinocyte culture media contain choline 
in a micromolar range  [37] , corresponding to human free choline 
serum levels and protecting keratinocytes from apoptosis as 
described above. Adding the pharmacological profi le for the 
cholinergic substances used to the distribution of the AChR in 
the epidermis and OTC of different developmental stages, it is 
most likely that inhibition of either  � 3  *   or  � 9 nAChR, which are 
both expressed in the basal and lower suprabasal layers, is nec-
essary to induce acantholysis. In addition, inhibition of at least 
the stimulatory M 3  AChR, possibly also the M 5  AChR, which are 
both found in the basal layer, seems to produce similar effects. 
On the other hand, predominant inhibition of the M 1  AChR by 
glycopyrrolate did not lead to acantholysis but to a disturbed 
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epithelial architecture in the upper epidermal layers, thus inter-
fering with barrier formation. These conclusions are supported 
by recent fi ndings using knock-out and gene-silencing 
approaches  [38] . In conclusion, terminal differentiation, barrier 
formation, keratinocyte cell adhesion and proliferation are con-
trolled by both nicotinic and muscarinic AChR.   

 Does ACh infl uence the function of cutaneous 
adnexal structures? 
  &  
 The pilosebaceous unit seems to possess a complex AChR expres-
sion pattern that is only beginning to be understood. In the 
infundibulum, an epidermis-like AChR expression pattern has 
been demonstrated, with increased immunoreactivity especially 
for the  � 5,  � 10,  � 2, M 3  and M 5  antisera applied. In the subin-
fundibular outer root sheath, all AChRs except  � 9,  � 1 and M 4  can 
be found in the basal layer while the  � 9, M 4  and M 5  AChRs seem 
to be restricted to the central layer. The  � 5,  � 10,  � 1,  � 2, M 1  – M 4  
chains are strongly expressed in the inner root sheath. In the 
trichocytes forming the hair shaft a strong immunoreactivity of 
 � 3,  � 4,  � 9, M 2 , M 3 , M 4  and M 5  sera can been noted, while matrix 
cells seem to express only the  � 5,  � 9, M 3  and M 4  AChR subunits. 
Up to now, no functional data are available on the impact of ACh 
on hair follicle biology. 
 The main manifestation of a reduced sebum production, sebos-
tasis, is dryness of the skin. Increased sebum production, sebor-
rhea, is associated with several skin diseases including acne 
vulgaris or seborrhoic eczema  [39] . Increased sebum production 
or altered sebum composition may be caused by chronic nico-
tine exposure on nAChR present in sebaceous glands explaining 
why smoking negatively infl uences acne vulgaris  [40] . In seba-
ceous glands, the undifferentiated basal sebocytes express the 
 � 3,  � 9,  � 4, M 3  – M 5  AChRs while the  � 7,  � 2,  � 4, M 2  and M 4  AChR 
subunits are produced in mature sebocytes. The sebaceous duct 
shows a particularly strong staining with  � 5,  � 7 and M 3  sera. The 
presence of the nAChR suggests a role for ACh in sebum produc-
tion and as promoter of sebocyte differentiation. Moreover, an 
upregulation of the  “ inhibitory ”  mAChR M 2  and M 4  in mature 
sebocytes as compared to undifferentiated sebocytes of the 
basal seboglandular layers was demonstrated while the  “ stimu-
latory ”  mAChR M 3  and M 5  are both expressed in basal sebocytes 
 [9] .   

 Cholinergic control of melanocytes and 
tegumental pigmentation 
  &  
 The roles of melanocytes and endothelial cells in the production 
of erythema and tanning, respectively, are well-known. Much 
less is known about the signaling pathways initiating these 
responses. In certain plants, prokaryotes and eukaryotes, light 
modulates ACh metabolism, and ACh mediates biologic effects 
of light on the organism  [41,   42] . Melanocytes (MC) have been 
shown to be targets of ACh action by virtue of their AChR expres-
sion. Both mAChR (M1 – M5) and  � 1,  � 3,  � 5,  � 7,  � 1,  � 2,  �  and  �  
nAChR have been found in cultured and / or normal human MCs 
 [43] . To characterize the second messenger pathways down-
stream of the melanocyte ACh receptors, [Ca 2    +     ] i  measurements 
were performed using Fura 2  [43] . Stimulation of MCs with 
micromolar concentrations of carbachol or muscarine induced a 
peak of [Ca 2    +     ] i  in MCs, reaching approximately 10 times the 

baseline at 100    � M of muscarine. The rise of [Ca 2    +     ] i  could be 
blocked with atropine but not with mecamylamine, suggesting 
that a ganglionic nAChR subtype was not involved. Regulation of 
[Ca 2    +     ] i  through melanocyte ACh receptors suggests an impor-
tant physiologic role of the ACh axis in melanocyte biology and 
skin pigmentation. Indeed, in cultures of human MCs, ACh 
increases the quantity of Bcl-2 and other cell proteins and 
decreases tyrosine hydroxylase and DOPA oxidase activities 
 [44] . 
 At the skin level, ACh inhibits the local response of MCs to  � -
MSH  [45] , and directly alters vital functions of MCs. Acting 
through its nicotinic receptors, ACh has been shown to elicit pig-
mentation. Melanin pigmentation was the predominant fi nding 
in oral mucosal lesions at the site of application for 3 – 6 months 
of a sublingual tablet containing 2   mg nicotine in a smoking ces-
sation study  [46] . The nicotinic effects of ACh, leading to hyper-
pigmentation, seem to be controlled by its muscarinic effects, 
mediated by mAChRs. Kurzen and Schallreuter  [4]  have recently 
proposed that the melanocyte M2 and M4 subtypes, which are 
known to inhibit cAMP synthesis, produce a negative feedback 
on tyrosinase-pigmentation to counteract the  � -MSH / MC-1R 
and catecholamine /  � 2-adrenergic response in MCs as described 
by Gillbro and co-workers  [47] .   

 Hypothetical role of acetylcholine in mediating 
cutaneous effects of UV radiation (UVR) 
  &  
 Endogenous NO is generated in human skin in response to both 
ACh injection and UVR  [48] , but the cell type producing NO 
remains unknown. The neural system apparently is not involved 
since the erythema response to UVB is seen in denervated skin 
 [49] . UVB upregulates NO production in cultured keratinocytes 
 [50]  and NO produced by UV-irradiated keratinocytes stimulates 
melanogenesis. Both UVB- and ACh-induced NO production is 
mediated by upregulation of the Ca 2    +     -dependent constitutive 
NO synthase  [48,   51] . ACh is well known to regulate cutaneous 
blood fl ow via NO  [52] . Therefore, it can be hypothesized that 
ACh releases NO from keratinocytes and cutaneous endothelial 
cells, and this NO then induces erythema and melanogenesis, as 
proposed in     �  �     Fig. 1  .   

 Vitiligo 
  &  
 The response of MCs to ACh depends on the activity / amount of 
the ACh-degrading enzyme AChE. The AChE activity is lowered 
in vitiliginous skin during depigmentation, but returns to nor-
mal on repigmentation  [53] , in keeping with the hypothesis that 
an enhanced cholinergic activity in vitiliginous skin may be a 
direct effect of increased local ACh concentration due to either 
increased secretion of decreased local clearing of ACh  [54] . The 
hypothesis about causative role for ACh in depigmentation in 
vitiligo was formulated based on fi nding in the vitiliginous areas 
of an increase of a) surface temperature, b) sweat production, 
and 3) bleeding, which was interpreted as an evidence in favor 
of a local predominance of cholinergic infl uences, compared to 
the normal skin areas. Only very recently has it been recognized 
that AChE activity, but not that of ChAT, is regulated by H 2 O 2  
 [55] . Considering that the outer layer of human skin can be a 
target for UV-generated H 2 O 2  in the millimolar range, this mech-
anism needs to be taken into account for the regulation of ACh 
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homeostasis in skin biology and pathology. In this context, it has 
been suggested that ACh, as well as millimolar concentrations of 
H 2 O 2 , may well account for the described pruritus in active /
 progressive vitiligo  [4] .   

 The cholinergic system of dermal fi broblasts: 
regulation of cell-cycle progression and apoptosis 
  &  
 High AChE activity in human dermis  [56]  suggested the exist-
ence of a non-neuronal cholinergic system in dermal fi broblasts 
(DFs). The results of RT-PCR, western blotting and immunofl uo-
rescence assays showed that human DFs respond to ACh via 
classical ACh receptors. At different  in vitro  and  in vivo  condi-
tions, DFs may express  � 3 � 2( � 4)    ±     � 5,  � 7, and  � 9 nAChRs  [20] , and 
M 2 , M 4 , and M 5  mAChR subtypes coupled to the regulation of 
[Ca 2    +     ] i  levels  [57] . These fi ndings are consistent with early 
reports that both anti-mAChR antibody  [18,   58]  and muscarinic 
drugs  [59]  react specifi cally with DFs. 
 Nicotinic and muscarinic effects on fi broblast proliferation had 
also been reported  [60,   61] . To elucidate the biological functions 
of nAChRs expressed in DFs, the nicotinic effects on transcrip-
tion and translation of the genes encoding the cell cycle and 
apoptosis regulators were measured in  in vitro  experiments  [62] . 
DFs stimulated with nicotine showed increased levels of the p21, 
cyclin D1, PCNA, Ki-67, caspase 3 and bcl-2 mRNA transcripts. 
These effects were largely blocked in the presence of 
mecamylamine  –  an antagonist preferentially ligating the  “ gan-
glionic ”  type of nAChRs. These results suggested that the role of 
the ACh-gated ion channels involves the contribution of the  � 3 
subunit, i.e.,  � 3 � 2( � 4)    ±     � 5, in the nicotinergic control of DFs. 
 Quantitative RT-PCR and western blotting assays were used to 
measure alterations in the expression of genes coding for the 
cell cycle and apoptosis markers in DFs from neonates delivered 
by  � 3    +     /     −     mice  [62] . Compared to wild type DFs, the  � 3    −     /     −     DFs 
showed decreased mRNA levels of p21, PCNA, cyclin D1, Ki-67 
and bcl-2, and increased mRNA levels of p53, bax and caspase 3. 
Functional deletion of  � 3 nAChR with receptor-specifi c antisense 

oligonucleotides resulted in characteristic changes in the cell 
cycle gene expression, which were similar to those observed in 
DFs from  � 3 knockout mice. The changes in the cell cycle pro-
gression of murine DFs lacking  � 3 were found to be just the 
opposite to those observed in human DFs treated with nicotine, 
suggesting that DF  � 3-containing nAChRs mediate, at least in 
part, the effects of nicotine on DFs.   

 Fibroblast nicotinic receptors control tissue 
remodeling 
  &  
 Nicotine has been reported to alter extracellular matrix reor-
ganizational properties of DFs  [63] . To determine the role of 
fi broblast nAChRs in mediating cutaneous effects of nicotine, 
the expression of collagen I � 1, elastin and MMP-1 were meas-
ured in cultured human and murine DFs  [62] . Nicotine increased 
all studied parameters, and mecamylamine abolished these 
alterations, indicating that they resulted from stimulation of an 
 � 3  *  -made nAChR. A quantitative analysis of collagen I � 1, elastin 
and MMP-1 in DFs grown from  � 3    −     /     −     mice showed a 1.3-fold 
decrease of both the mRNA and the protein levels of elastin, 
compared to  � 3    +     /     +     DFs. The mRNA level of collagen I � 1 was not 
altered in  � 3    −     /     −     DFs. Surprisingly, the mRNA and protein levels 
of MMP-1 and the protein level of collagen I � 1 were increased in 
 � 3    −     /     −     DFs, with MMP-1   mRNA exceeding the control level by 
24-fold  [62] . Thus, nicotine may alter elastin production through 
the signaling pathways downstream from  � 3  *   nAChR, whereas 
changes in the collagen I � 1 and MMP-1 gene expression may be 
mediated by other type(s) of nAChRs expressed in DFs. In sup-
port of this concept, mRNA transcripts of collagen I � 1, elastin 
and MMP-1 are decreased in the skin of  � 7 knockout mice  [64] .   

 Cutaneous toxicity of nicotine 
  &  
 Epidemiological studies point to a signifi cant correlation 
between tobacco smoke and alterations in tissue remodeling, 
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Hypothetical Role of ACh in Cutaneous Pigmentation and Photosensitivity   Fig. 1           Hypothetical scheme of ACh involvement 
in cutaneous UVR effects. The epidermis converts 
UVR into ACh signals by changing the kinetics of ACh 
metabolism in keratinocytes. Newly synthesized 
ACh then activates other skin cells by releasing 
NO. The cutaneous response involves melanocytes 
(MC), endothelial cells (EC), and vascular smooth 
muscles (VSM). The tanning UVR dose releases 
preformed ACh from suprabasal keratinocytes 
(SKC) which stimulates NO release from basal 
keratinocytes (BKC), thus activating melanogenesis 
and causing erythema. The inhibitory nature of 
 delayed  effects of ACh on MC  [53]  may be required 
to prevent hyperpigmentation. The erythemagenic 
dose stimulates BKC to release ACh. In addition 
to its putative  immediate  effect on MC, such as 
pigment aggregation, ACh, released by BKC, 
also stimulates NO production by EC, leading to 
erythema and increased microcirculatory fl ow 
 [124] . The burning dose exhausts ACh stores and 
abolishes ACh signaling because it causes ACh 
receptor desensitization. Keratinocytes deprived of 
endogenous ACh shrink, loosen their attachments 
and thus die (a mechanism for blistering?).  
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such as premature skin aging, i. e., thin, dry, pale, rough and 
wrinkled, or simply  “ cigarette, ”  skin  [65] . Tobacco smoke con-
tains at least 4000 chemicals, and it has been proposed that 
nicotine is one of the key constituents causing adverse health 
effects (reviewed in  [66]) . Smoking down-regulates collagen syn-
thesis in skin, which is considered as one etiologic factor for 
accelerated skin aging  [67] . The mechanism may involve up-
regulated expression of MMP-1, MMP-2 and MMP-3  [68] . The  in 
vitro  exposure experiments have demonstrated that nicotine 
signifi cantly increases both degradation of type I collagen and 
collagen production  [63,   69] . The expression of the tissue inhibi-
tor of MMP-1 and -3   mRNAs remained unchanged  [70] . 
 Recently it has been demonstrated that nAChRs expressed by 
non-neuronal cells not only mediate pharmacological effects of 
nicotine in these locations but also are a target themselves for 
deleterious effects of nicotine  [71,   72] . Long-term exposure to 
nicotine alters gene expression of nAChR subunits, which modi-
fi es nicotinic pharmacology of the exposed cells. Thus, for exam-
ple an overexposure to nicotine alters both the ligand-binding 
kinetics and the subunit composition of nAChRs  [62] . The 
changes in the  � 3 � 5 � 7 � 2 and  � 4 nAChR subunit gene expression 
are found at both the mRNA and protein levels. Since exposure 
to nicotine increases the fi laggrin content in keratinocytes  [73] , 
and since overstimulation of nAChRs produces antagonist-like 
effects due to receptor desensitization  [71] , the exhaustion of 
the nAChR-mediated regulatory pathway of moisturizing factor 
production may offer a novel explanation of the early appear-
ance of premature aged skin in tobacco users  [74] . Thus, some of 
the pathobiologic effects of tobacco products on extracellular 
matrix turnover in the skin may stem from nicotine-induced 
alterations in the physiologic control of the genetically deter-
mined program of growth and tissue remodeling in the dermis 
as well as alterations in the structure and function of fi broblast 
nAChRs.   

 The role of the cholinergic system in endothelial 
cell biology and angiogenesis 
  &  
 All four components of the non-neuronal cholinergic system are 
expressed within the endothelium, a tissue which is present 
ubiquitously in the body including skin. 1) Synthesis of ACh has 
been shown in cultured endothelial cells of different species 
including man  [75 – 77] . Positive ChAT-immunohistochemistry 
and ChAT-mRNA were found in freshly isolated human umbilical 
cells  [78,   79] . 2) Positive immunohistochemistry of the cataboliz-
ing enzyme acetylcholinesterase has been demonstrated in 
brain capillaries  [80] . 3) The high affi nity choline uptake system 
supplies the endothelial cell with extracellular choline  [81] . 4) 
Finally, muscarinic and nicotine receptors have been demon-
strated on endothelial cells. M 1 - and M 3 - mAChR are found in 
most vessels while only the mRNA transcript of the M 2 -subtype 
has been demonstrated in endothelial cells. In the pulmonary 
circulation it is also likely that the functionally active M 4 -sub-
type is expressed. Nicotine receptor subunits are expressed in a 
species- and tissue specifi c-manner:  � 3,  � 5,  � 2 and  � 4 subunits 
in endothelial cells of the human aorta  [82] ;  � 3,  � 4,  � 5,  � 6,  � 7, 
and  � 10 in rat aorta and  � 2 in rat pulmonary trunk  [83] ;  � 3,  � 5, 
 � 7,  � 2 and ( � 4) subunits in bovine brain and rat coronary micro-
vascular endothelial cells  [84 – 86] . These subunits form func-
tionally active homo- or heteropentamers. Taken together, 
endothelial cells represent a prominent part of the non-neuro-

nal cholinergic system. Thus, these cells synthesize and may 
release non-neuronal ACh, which by stimulating muscarinic and 
nicotinic receptors affects endothelial phenotypic functions, 
such as regulation of vasomotor tone, angiogenesis, infection 
and immune response. 
 Endogenous ACh may be involved in the regulation of these phe-
notypic functions by auto- and paracrine mechanisms. Impor-
tantly, applied cholinergic agonists / antagonists can interfere 
with this system including drugs applied directly on the skin 
(for example nicotine or scopolamine containing delivery sys-
tems). It is widely accepted that endothelial cells contribute to 
the regulation of perfusion. In vascular tissue acetylcholine via 
activation of muscarinic receptors (M 3 - and M 1 -subtypes) is a 
well-known mediator for the release of nitric oxide, endothe-
lium-derived hyperpolarizing factor and prostanoids. Blood 
fl ow, shear stress and local blood pressure may affect endothe-
lial ACh synthesis and release and as a consequence may modu-
late the release of vasoactive mediators. Milner and colleagues 
 [87]  have shown the release of endothelial ACh in response to an 
increased fl ow. The endothelium is also an important target for 
immuno-competent cells, which must penetrate the vascular 
wall to migrate into the tissue. Adhesion molecules mediate the 
cross talk between immune and endothelial cells. Kirkpatrick 
et al.  [79]  did not fi nd an effect of nicotine (100   nM – 100    � M) on 
the expression of VCAM and E-selectin, but ICAM1 expression 
was slightly enhanced. In contrast to these results it was reported 
that nicotine substantially stimulated the expression of VCAM1, 
ICAM and E-selectin in human umbilical vein endothelial cells 
(HUVEC) via calcium infl ux, an effect blockable by mecamylamine 
and MAPK inhibitors  [88 – 90] . It should also be considered that 
Saeed and colleagues described an inhibitory effect of nicotine 
on the expression of adhesion molecules, when the endothelium 
was stimulated by the Schwarztman reaction  in vivo  or by TNF �  
 in vitro   [91] . Probably, the effect of nicotine depends on the acti-
vation state of the endothelial cells. 
 Low concentrations of nicotine (0.1    � M) promote the invasion of 
 E. coli.  bacteria in HUVEC, an effect which could be blocked by 
 � -bungarotoxin  [92] . Whether this mechanism can explain the 
increased microbial infections of heavy smokers remains an 
open question. Nevertheless, it has convincingly demonstrated 
that nicotine impairs microvascular permeability: Nicotine 
increases the blood brain barrier permeability and paracellular 
permeability and reduces connexin 43 expression and gap-junc-
tional communication  [84,   86,   93] . All these fi ndings open new 
and highly important insights into the fi ne tuning of endothelial 
homeostasis by non-neuronal cholinergic mechanisms. Nicotine 
promotes angiogenesis  in vivo  (0.03    � g / kg) and  in vitro  (100   pM) 
in a mouse model and accelerates the growth of tumours under 
the condition of an artifi cially stimulated neovascularization 
 [94] . In the  in vitro  model stimulated angiogenesis was blocked 
by mecamylamine or  � -bungarotoxin, indicating fi rstly that an 
endogenous cholinergic pathway is involved and secondly, that 
nicotinic receptors of the  � 7-subtype are mediating this effect 
 [95] . Most likely, the proliferative effect of non-neuronal acetyl-
choline (or applied nicotine) contributes to this mechanism  [96] . 
Such a mechanism may contribute to regeneration and repair of 
human tissue. However, an overstimulated or impaired non-
neuronal cholinergic system may cause a reduction of the 
endothelial barrier function, an enhanced permeability for sign-
aling molecules and migrating immune cells and as a conse-
quence infl ammation and imbalance between proliferation and 
cell death. 
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 Taken together, the endothelium can regulate its phenotypic 
functions via the involvement of the non-neuronal cholinergic 
system, i.e. is independent of cholinergic neurons. Non-neuronal 
ACh can originate from endothelial as well as from circulating 
immune cells. Smoking and other pathogenic (exogenous, 
endogenous) factors target the endothelial non-neuronal cholin-
ergic system which contributes to the pathogenesis of various 
diseases like atherosclerosis, tumor growth and infl ammation.   

 Cholinergic components expressed in immune 
cells 
  &  
 Direct measurement of physiologically relevant amounts of ACh 
in the plasma and blood cells of humans and rabbits (see the 
review by Kawashima and Fujii  [97]  and Kawashima et al.  [7] ) 
has stimulated investigation of the synthesis of non-neuronal 
ACh by immune competent cells. While the Langerhans cells 
residing in follicular and interfollicular epidermis were demon-
strated to express AChE  [98]  accumulated evidence demon-
strates that lymphocytes express most of the cholinergic 
components found in the cholinergic nervous system and is con-
sistent with expression of a non-neuronal cholinergic system in 
immune cells. For example, T cells produce ACh, ChAT  [99]  and 
CHT1. Both T and B cells express AChE and varying levels of 
mAChRs (M 1 , M 2 , M 3 , M 4  and M 5 ) and nAChRs ( � 2,  � 3,  � 4,  � 5,  � 6, 
 � 7,  � 9,  � 10,  � 2 and  � 4) (reviewed in Kawashima and Fujii  [100] ).   

 Regulatory mechanisms affecting lymphocytic 
cholinergic activity 
  &  
 The T cell activator phytohemagglutinin (PHA) up-regulates 
ChAT gene expression and enhances synthesis and release of 
ACh via TCR / CD3 complex activation  [101] . Although in the 
periphery ACh synthesis is catalyzed by both ChAT and carnitine 
acetyltransferase  [102] , PHA specifi cally activates ChAT  [101]  
and M 5    mAChR gene expression  [103]  in T cells. Similarly, mono-
clonal antibody-mediated stimulation of CD11a (LFA-1  � -chain) 
up-regulates ChAT and M 5    mAChR gene expression in CEM T 
cells  [104] . Lymphocytic cholinergic transmission appears to be 
activated by the interaction of T cells with antigen presenting 
cells and / or other cell types. Thus, for instance, immunological 
synapses are formed via the interaction of CD4 and CD8 with 
MHC class II and MHC class I, respectively, and between LFA-1 
and ICAM-1  [100] . 
  Staphylococcus aureus  Cowan I up-regulates expression of 
M 5    mAChR mRNA in Daudi B cells and up-regulates expression 
of ChAT in mononuclear leukocytes (MNLs), thereby increasing 
their ACh content  [103] . Thus, cytokines released from activated 
B cells appear to act in an autocrine / paracrine fashion to stimu-
late ChAT expression and ACh synthesis by T cells, which in turn 
activates lymphocytic cholinergic transmission via M 5  mAChRs 
in both T and B cells.   

 Roles of ACh in the regulation of lymphocyte 
function 
  &  
 The biochemical and functional changes induced by stimulation 
of lymphocytic mAChRs and / or nAChRs include enhanced cyto-
toxic activity, increased cGMP and inositol-1,4,5-triphosphate 

(IP 3 ) content, inhibition of cAMP synthesis and increased intrac-
ellular free Ca 2    +      concentration ([Ca 2    +     ] i ). ACh and mAChR ago-
nists induce rapid increases in [Ca 2    +     ] i  followed by Ca 2    +      
oscillations in both CEM T cells and Daudi B cells  [97,   100,   105 –
 108] . RT-PCR analysis showed that mAChR agonists also up-reg-
ulate  c-fos  expression in both CEM and Daudi cells. 
Pharmacological analysis using various mAChR-specifi c antago-
nists revealed that ACh induces Ca 2    +      signalling in lymphocytes 
via M 3  and / or M 5    mAChRs, leading to IP 3 -mediated up-regula-
tion of  c-fos  expression, and that M 1    mAChRs are involved in the 
differentiation of CD8    +     T cells into cytotoxic T cells  [109] . Nico-
tinic cholinergic signaling also appears to be involved in the 
regulation of lymphocyte function. In human MNLs and leuke-
mic T and B cell lines, nicotine acutely elicits infl uxes of extracel-
lular Ca 2    +      that mediate rapid and transient increases of [Ca 2    +     ] i . 
That this response is effectively suppressed by  � -bungarotoxin 
in CEM cells indicates the nicotinic signal is transduced via  � 7 
nAChRs  [100,   108] . In addition, chronic nicotine modifi es 
immune function by inhibiting proliferative responses or by 
causing anergy via constitutive activation of protein kinases and 
depletion of IP 3 -sensitive Ca 2    +      stores. Finally, the altered lym-
phocytic cholinergic activity seen in animal models exhibiting 
immunological abnormalities is consistent with the involve-
ment of a local lymphocytic cholinergic system in the regulation 
of immune function (reviewed in Kawashima and Fujii  [100] ).   

 Possible interaction of immune cells with vascular 
endothelial cells (VECs) and keratinocytes (KCs) 
through non-neuronal ACh 
  &  
 ACh may play an intermediary role in the dialogue between 
immune competent and tissue cells regulating immune function 
and local circulation  [100] . During CAM-mediated interactions, 
T cells and VECs are believed to use ACh to communicate recip-
rocally via mAChRs on both cell types, and possibly nAChRs on T 
cells. Kawashima and Fujii proposed that the interactions 
between T cells and VECs facilitate ACh synthesis and release in 
both cell types, leading to vascular smooth muscle relaxation 
and erythema. Potentiation of NO synthesis during the interac-
tion is believed to evoke local vascular smooth muscle relaxa-
tion, thereby facilitating extravascular migration of T cells. ACh 
released from T cells, and possibly VECs, may also be involved in 
regulating production of TNF- � , which in turn acts on nAChRs in 
T cells (reviewed by Kawashima and Fujii  [100] ). 
 In addition to synthesizing ACh and expressing mAChRs and 
nAChRs  [1] , KCs have the ability to secrete cytokines and chem-
okines that facilitate lymphocyte recruitment to the skin. Fur-
thermore, KCs also express MHC class II and adhesion molecules 
(ICAM-1) under the infl uence of lymphocyte-derived cytokines 
such as IFN- �  and IL-17  [110] . Immunological synapses formed 
between T cells and KCs through the interaction of CD4 with 
MHC class II and LFA-1 with ICAM-1 should facilitate synthesis 
and release of ACh in both T cells and KCs, which should in turn 
act as an autocrine / paracrine factor on their own mAChRs and / or 
nAChRs, leading to skin lesions through modifi cation of KC dif-
ferentiation, cell cycle progression, adhesion and apoptosis 
(    �  �     Fig. 2  ).   
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 Cholinergic modulation of immune responses 
  &  
 In addition to the mostly sympathetic hard-wiring of lymphatic 
organs by the autonomic nervous system  [111,   112] , which is a 
prerequisite for a direct activation of, e. g., lymphocytes in lymph 
nodes, extraneuronal  “ neurotransmitter ”  and local hormone 
systems have been recognized in recent years. A central player 
in this  “ infl ammatory refl ex ”  is the cholinergic system  [113] . The 
autonomic cholinergic system, in part represented by the vagal 
nerve, transmits information bidirectionally from the peripheral 
immune organs to the brain and back, thus detecting local 
infl ammatory reactions, e.g., in response to microbial invasion. 
This sensory input has been called the sixth sense. Consequently, 
dissecting the vagal nerve has serious consequences e.g. for the 
detection of bacterial infections. Intraperitoneal injection of Il-1 
or endotoxin fails to induce fever after vagotomy. In contrast, 
electrical stimulation of the vagal nerve inhibits TNF- �  produc-
tion in the liver, spleen and heart observed during ischemia, 
shock or endotoxinemia. Many other in vitro data support a 
potent immune-modulating capacity of ACh. In macrophages, 
the inhibitory effect on TNF- � , Il-1 or Il-6 production seems to be 
mediated, at least in part, through the  � 7 nACh-R. The role of 
other AChR present on macrophages is still under investigation. 
In human alveolar macrophages, ACh has been found to stimu-
late chemotactic activity on neutrophils, monocytes and eosi-
nophils. This chemotactic effect has been suggested to be 
predominantly mediated by leukotriene B4  [114] . A combination 
of different anticholinergic substances (4-DAMP effective, piren-
zipine ineffective) that were able to inhibit the observed ACh 
effects, led the authors to conclude that the responsible AChR 
expressed on alveolar macrophages could be the M 3    mAChR. 
However, recent studies demonstrated that 4-DAMP does not 
discriminate between M 3  and M 5  AChR. In our own studies, we 
found M 5  to be the predominant mAChR on human blood-
derived macrophages (HK, unpublished observation). 
 Many anticholinergic substances such as ipratropium or tiotro-
pium, currently in clinical use for the treatment of chronic 

obstructive pulmonary disease (COPD), have been shown to 
exert anti-infl ammatory effects, supposedly through inhibition 
of the mAChR subunits on alveolar macrophages  [115] . 
 Nicotine has been shown to reduce IL-2 and TNF- �  release from 
PBMC signifi cantly but not quite as potently as prednisolone. In 
addition, transdermal application of nicotine reduces the irri-
tant contact eczema induced by SDS and similarly the UVB-
induced sunburn reaction (reviewed in  [4] ). These nicotine 
effects may in part be explained by its ability to suppress the 
migration of leukocytes to an infl ammation / infection site. The 
decreased infl ammation correlates with lower chemotaxis /
 chemokinesis of peripheral blood mononuclear cells (PBMC) 
toward formyl-methionyl-leucyl-phenylalanine and monocyte 
chemoattractant protein-1 without affecting the density of their 
respective receptors. Thus, because nicotine suppresses leuko-
cyte migration, it might contribute to the delayed wound heal-
ing and increased incidence of respiratory infections among 
smokers  [116] . Another potential disease-modulating effect was 
found in Chlamydia pneumoniae (Cpn)-infected immune cells. 
Lymphocytes and macrophages are susceptible to Cpn infection, 
which has been shown to alter their expression levels of IL-10, 
IL-12 and TNF- �  in a time-dependent fashion. Nicotine treat-
ment of the Cpn-infected cells up-regulated IL-10, but not TNF-
alpha and IL-12, and also resulted in signifi cant down-regulation 
of TGF- � 1 production which was marked in the Cpn-infected 
control cells. The combined action of nicotine and Cpn on 
cytokine production may have an impact in chronic infl amma-
tory diseases  [117] .   

 Interaction of systems 
  &  
 It is well known that the release of ACh from cholinergic neu-
rons is modulated by a battery of receptors located on the vari-
cosities. For example, noradrenaline inhibits the release of ACh 
from myenteric neurons via  � 2-adrenoceptors and vice versa 
acetylcholine reduces the release of noradrenaline via presynap-

  Fig. 2           Schematic diagram illustrating the 
numerous transduction and regulatory pathways 
that affect and are affected by the lymphocytic 
cholinergic system during the interaction of T cells 
with activated keratinocytes expressing MHC class 
II and ICAM-1. ACh: acetylcholine; AcCoA: acetyl 
coenzyme A; ChAT: choline acetyltransferase; DAG: 
diacyl glycerol; ER: endoplasmic reticulum; ICAM-
1: intercellular adhesion molecule-1; IP 3 : inositol-
1,4,5-trisphosphate; KCs: keratinocytes; mAChR: 
muscarinic ACh receptor; MAPK: mitogen activated 
protein kinase; MAPKK: MAPK kinase; MHC: major 
histocompatibility complex; nAChR: nicotinic ACh 
receptor; PKC: protein kinase C; PIP2: phosphatidyl 
inositol-4,5-diphosphate; PLC: phospholipase C; 
TCR: T cell receptor.  
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tic inhibitory muscarinic receptors. In addition various kinds of 
neuronally localized receptors (adenosine receptors, 5-hydrox-
ytryptamine receptors, opioid receptors, P2X- and P2Y-recep-
tors, prostanoid receptors) modulate the release of neuronal 
ACh. It is unknown, whether the release of non-neuronal ACh is 
regulated likewise. In the human placenta the release of non-
neuronal ACh is stimulated by nicotine receptors. Moreover, in 
the human placenta it has been shown that the release of non-
neuronal acetylcholine is mediated via organic cation transport-
ers, subtype OCT1 and OCT3, the latter also known as 
non-neuronal catecholamine uptake 2  [118] . The cation trans-
porters are widely expressed and multiple interactions with 
endogenous substrates as well as with applied drugs are possi-
ble  [119] . Thus multiple interactions between endogenous com-
pounds as well as xenobiotics and the release of non-neuronal 
acetylcholine can emerge. For example, noradrenaline and 
adrenaline reduced the release of non-neuronal ACh in the 
human placenta via substrate inhibition at the cation trans-
porter. Thus, circulating catecholamines may interfere with the 
release of non-neuronal acetylcholine at this common target via 
substrate competition, i.e., on the basis of a receptor-independ-
ent pathway. Quinine, like many as drugs, is a strong inhibitor of 
OCTs and reduces the release of non-neuronal acetylcholine 
which may explain its atropine-like actions  [120] . For further 
research it is important to identify those drugs which interfere 
with the release of non-neuronal acetylcholine in attempt to 
fi nd new therapeutical targets and to reduce possible side effects 
of the current therapy. 
 It is also possible that non-neuronal ACh released from epithe-
lial cells modifi es the functions of immune cells migrating into 
the mucosa and vice versa. The action radius of non-neuronal 
ACh is not known. Can ACh released from fi broblasts, fat cells or 
eccrine glands within the skin cross the basal membrane and 
attain at all epidermal cell layers? We assume a very restricted 
area of action, because of the ubiquitously expressed esterases. 
The ACh specifi c esterase represents the most effective enzyme 
created by nature so far. In vascular tissue, however, it is possible 
that non-neuronal ACh released from adherent immune cells 
interacts with endothelial cells. Also within the microvascular 
space (lung, intestine) a direct interaction between endothelial 
and epithelial acetylcholine appears possible.   

 Perspective 
  &  
 In the last 10 – 15 year , a wealth of data has emerged, describing 
different roles of extra- or non-neuronal ACh in different organs, 
most notably a highly complex setting of active players and tar-
gets and possible bystanders in the cholinergic concert. In the 
skin, not only epidermal keratinocytes are the main players, but 
in addition, as described, most other components permanently 
or transiently residing in the skin. Whether it is mostly auto-
crine and paracrine or also endocrine actions of ACh / choline and 
the AChRs which predominate in different pathobiological sce-
narios still remains to be elucidated. Bridges will have to be built 
to the autonomic cholinergic system and most importantly to 
the different components of the immune system.          
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