Int J Sports Med 2008; 29(2): 116-119
DOI: 10.1055/s-2007-965819
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Cardiovascular Effects of Cadence and Workload

J. L. Moore1 , J. D. Shaffrath2 , G. A. Casazza3 , C. L. Stebbins4
  • 1Sports Medicine, University of California, Davis, Sacramento, California, United States
  • 2Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, California, United States
  • 3Sports Medicine, University of California, Davis, Davis, California, United States
  • 4Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, California, United States
Further Information

Publication History

accepted after revision July 13, 2007

Publication Date:
24 October 2007 (online)

Abstract

Increases in cadence may augment SV during submaximal cycling (> 65 % V·O2max) via effects of increased muscle pump activity on preload. At lower workloads (45 - 65 % V·O2max), SV tends to plateau, suggesting that effects of increases in cadence on pump activity have little influence on SV. We hypothesized that cadence-induced increases in CO at submaximal workloads, where SV tends to plateau, are due to elevations in HR and/or O2 extraction. SV, CO, HR, V·O2, and Δa - vO2 were assessed at 80 and 100 rpm during workloads of 50 % (LO) or 65 % (HI) of V·O2max in 11 male cyclists. No changes in SV were seen. CO was higher at 100 rpm in 10 of 11 subjects at LO (18.1 ± 2.7 vs. 17.2 ± 2.6 L/min). V·O2 at both workloads was greater at 100 than 80 rpm as was HR (LO: 129 ± 11 vs. 121 ± 10 beats/min; HI: 146 ± 13 vs. 139 ± 14 beats/min) (p < 0.05). Δa - vO2 was greater at HI compared to LO at 80 (15.1 ± 1.6 vs. 13.6 ± 1.3 ml) and 100 rpm (16.0 ± 1.7 vs. 15.1 ± 1.6 ml) (p < 0.05). Results suggest that increases in O2 demand during low submaximal cycling (50 % V·O2max) at high cadences are met by HR-induced increases in CO. At higher workloads (65 % V·O2max), inability of higher cadences to increase CO and O2 delivery is offset by greater O2 extraction.

References

  • 1 Åstrand P-O, Cuddy T E, Saltin B, Stenberg J. Cardiac output during submaximal and maximal work.  J Appl Physiol. 1964;  19 268-274
  • 2 Bassett D R, Howley E T. Limiting factors for maximum oxygen uptake and determinants of endurance performance.  Med Sci Sports Exerc. 2000;  32 70-84
  • 3 Coast J R, Welch H G. Linear increase in optimal pedaling with increased power output in cycle ergometry.  Eur J Appl Physiol. 1985;  53 339-342
  • 4 Crawford M H, Petru M A, Rabinowitz C. Effect of isotonic exercise training on left ventricular volume during upright exercise.  Circulation. 1985;  72 1237-1243
  • 5 Ginzton L E, Conant R, Brizendine M, Laks M M. Effect of long-term high intensity aerobic training on left ventricular volume during maximal upright exercise.  J Am Coll Cardiol. 1989;  14 364-371
  • 6 Gledhill N, Cox D, Jamnik R. Endurance athletes' stroke volume does not plateau: major advantage is diastolic function.  Med Sci Sports Exerc. 1994;  26 1116-1121
  • 7 Gotshall R W, Bauer T A, Fahrner S L. Cycling cadence alters exercise hemodynamics.  Int J Sports Med. 1996;  17 17-21
  • 8 Hansen E A, Andersen J L, Nielsen J S, Sjogaard G. Muscle fibre type, efficiency and mechanical optima affect freely chosen pedal rate during cycling.  Acta Physiol Scand. 2002;  176 185-194
  • 9 Jones N L, Campbell E J. Clinical Exercise Testing. Philadelphia; WB Saunders 1982: 130-151
  • 10 Levy M N. The cardiac and vascular factors that determine systemic blood flow.  Circ Res. 1979;  44 739-747
  • 11 Lollgen H, Graham T, Sjogaard G. Muscle metabolites, force, and perceived exertion bicycling at various pedal rates.  Med Sci Sports Exerc. 1980;  12 345-351
  • 12 Lucia A, Hoyos J, Chicharro J L. Preferred pedaling cadence in professional cycling.  Med Sci Sports Exerc. 2001;  33 1361-1366
  • 13 Matsuda M, Sugishita Y, Koseki S, Ito I, Akatsuka T, Takamatsu K. Effect of exercise on left ventricular diastolic filling in athletes and non-athletes.  J Appl Physiol. 1983;  55 323-328
  • 14 Palmer G S, Noakes T D, Jawley J A. Metabolic and performance responses to constant-load vs. variable-intensity exercise in trained cyclists.  J Appl Physiol. 1999;  87 1186-1196
  • 15 Poole D C, Gaesser G A, Hogan M C, Knight D R, Wagner P D. Pulmonary and leg V·O2 during submaximal exercise: implications for muscular efficiency.  J Appl Physiol. 1992;  72 805-810
  • 16 Stickland M K, Welsh R C, Petersen S R, Tyberg J V, Anderson W D, Jones R L, Taylor D A, Bouffard M, Haykowsky M R. Does fitness level modulate the cardiovascular hemodynamic response to exercise?.  J Appl Physiol. 2006;  100 1895-1901
  • 17 Warburton D ER, Haykowsky M S, Quinnery H A, Blackmore D, Teo K K, Humen D P. Myocardial response to incremental exercise in endurance-trained athletes: influence of heart rate, contractility and the Frank-Starling effect.  Exp Physiol. 2002;  87 613-622
  • 18 Wilmore J H, Costill D L. Physiology of Sport and Exercise. Champaign, IL; Human Kinetics 1999: 226

Dr. Ph.D. Charles L. Stebbins

Internal Medicine, Division of Cardiovascular Medicine
University of California, Davis

One Shields Ave. TB - 172

95616 Davis, California

United States

Email: clstebbins@ucdavis.edu

    >