Synlett 2007(12): 1897-1900  
DOI: 10.1055/s-2007-984525
LETTER
© Georg Thieme Verlag Stuttgart · New York

Baker-Venkataraman Rearrangement Under Microwave Irradiation: A New Strategy for the Synthesis of 3-Aroyl-5-hydroxyflavones

Diana C. G. A. Pinto, Artur M. S. Silva*, José A. S. Cavaleiro
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
Fax: +351(234)370084; e-Mail: arturs@dq.ua.pt;
Further Information

Publication History

Received 9 May 2007
Publication Date:
25 June 2007 (online)

Abstract

Microwave irradiation selectively induces the Baker-Venkataraman rearrangement of 2′,6′-diaroyloxyacetophenones to give 3-aroyl-5-hydroxyflavones, in a very short reaction time. ­Under classical heating conditions these reactions afforded 5-hydroxyflavones as byproducts.

    References and Notes

  • 1a Middleton E. Kandaswami C. Theoharides TC. Pharmacol. Rev.  2000,  52:  673 
  • 1b Vasselin DA. Westwell AD. Matthews CS. Bradshaw TD. Stevens MFG. J. Med. Chem.  2006,  49:  3973 
  • 1c Comalada M. Ballester I. Bailón E. Sierra S. Xaus J. Gálvez J. Medina FS. Zarzuelo A. Biochem. Pharmacol.  2006,  72:  1010 
  • 2 Bors W. Heller W. Michel C. Stettmaier K. In Handbook of Antioxidants   Cadenas E. Packer L. Marcel Dekker; New York: 1996.  p.409 
  • 3 Rice-Evans CA. Packer L. Flavonoids in Health and Disease   Marcel Dekker; New York: 1998.  p.447 
  • 4 Hogale MB. Pawar BN. Nikam BP. J. Indian Chem. Soc.  1987,  64:  486 
  • 5 Quintin J. Roullier C. Thoret S. Lewin G. Tetrahedron  2006,  62:  4038 
  • 6a Fernandes E. Carvalho F. Silva AMS. Santos CMM. Pinto DCGA. Cavaleiro JAS. Bastos ML. J. Enzym. Inhib. Med. Chem.  2002,  17:  1756 
  • 6b Fernandes E. Carvalho M. Carvalho F. Silva AMS. Santos CMM. Pinto DCGA. Cavaleiro JAS. Bastos ML. Arch. Toxicol.  2003,  77:  500 
  • 6c Filipe P. Silva AMS. Morlière P. Brito CM. Patterson LK. Hug GL. Silva JN. Cavaleiro JAS. Mazière J.-C. Freitas JP. Santus R. Biochem. Pharmacol.  2004,  67:  2207 
  • 7 Pinto DCGA. Silva AMS. Almeida LMPM. Cavaleiro JAS. Elguero J. Eur. J. Org. Chem.  2002,  3807 ; and references cited therein
  • 8 Pinto DCGA. Silva AMS. Cavaleiro JAS. New J. Chem.  2000,  24:  85 
  • 12a Gaydou EM. Bianchini J.-P. Bull. Soc. Chim. Fr.  1978,  2:  43 
  • 12b Santos CMM. Silva AMS. Cavaleiro JAS. Eur. J. Org. Chem.  2003,  4575 
  • 13 Looker JH. Edman JR. Dappen I. J. Heterocycl. Chem.  1964,  1:  141 
  • See, for example:
  • 14a Brito CM. Pinto DCGA. Silva AMS. Silva AMG. Tomé AC. Cavaleiro JAS. Eur. J. Org. Chem.  2006,  2558 
  • 14b Silva VLM. Silva AMS. Pinto DCGA. Cavaleiro JAS. Synlett  2006,  1369 
9

Optimised Experimental Procedure A mixture of the 2′,6′-dihydroxyacetophenone (2a, 0.92 g, 6.05 mmol), the appropriate benzoic acid (13.31 mmol), 4-pyrrolidinopyridine (197 mg, 1.33 mmol), and N,N-dicyclohexylcarbodiimide (2.75 g, 13.33 mmol) in CH2Cl2 (50 mL) was stirred at r.t. for 12 h. The obtained dicyclohexylurea was filtered off and washed with CH2Cl2 (2 × 25 mL). The filtrate was evaporated to dryness and the residue recrystallised in from EtOH to provide the 2′,6′-diaroyloxyacetophenones 3a-c (3a, 83%; 3b, 78%; 3c, 80%).
A mixture of the 2′,4′,6′-trihydroxyacetophenone (2b, 0.86 g, 5.11 mmol), the appropriate benzoic acid (16.88 mmol), 4-pyrrolidinopyridine (250 mg, 1.69 mmol), and N,N-dicyclohexylcarbodiimide (3.48 g, 16.87 mmol) in CH2Cl2 (100 mL) was stirred at r.t. for 20 h. The obtained dicyclohexylurea was filtered off and washed with CH2Cl2 (2 × 30 mL). The filtrate was evaporated to dryness and the residue recrystallised in from EtOH to provide the 2′,4′,6′-triaroyloxyacetophenones 4a-c (4a, 80%; 4b, 85%; 4c, 79%).

10

Physical Data of 2′,4′,6′-Tribenzoyloxyacetophenone ( 4a) 1H NMR (300.13 MHz, CDCl3): δ = 2.51 (s, 3 H, 2-CH3), 7.25 (s, 2 H, H-3′,5′), 7.52 (dd, 6 H, J = 7.6, 6.4 Hz, H-3,5 of 2′,4′,6′-OCOC6H5), 7.66 (t, 3 H, J = 7.6 Hz, H-4 of 2′,4′,6′-OCOC6H5), 8.15-8.20 (m, 6 H, H-2,6 of 2′,4′,6′-OCOC6H5) ppm. 13C NMR (75.47 MHz, CDCl3): δ = 31.4 (2-CH3), 114.6 (C-3′,5′), 125.8 (C-1′), 128.4 (C-1 of 2′,6′-OCOC 6H5), 128.6 (C-1 of 4′-OCOC 6H5), 128.7 (C-3,5 of 4′-OCOC 6H5), 128.8 (C-3,5 of 2′,6′-OCOC 6H5), 130.25 (C-2,6 of 4′-OCOC 6H5), 130.31 (C-2,6 of 2′,6′-OCOC 6H5), 134.0 (C-4 of 4′-OCOC 6H5), 134.2 (C-4 of 2′,6′-OCOC 6H5), 148.5 (C-2′,6′), 152.0 (C-4′), 164.1 (C=O of 4′-OCOC6H5), 164.2 (C=O of 2′,6′-OCOC6H5), 197.5 (C-1) ppm. MS (ES+): m/z (%) = 503 (100) [M + Na]+.

11

Physical Data of 3′,4′-Dibenzyloxy-5-hydroxyflavone ( 5d)
1H NMR (300.13 MHz, CDCl3): δ = 5.25 and 5.26 (2 s, 2 × 2 H, 3′,4′-OCH 2C6H5), 6.57 (s, 1 H, H-3), 6.80 (dd, 1 H, J = 8.3, 0.7 Hz, H-6), 6.94 (dd, 1 H, J = 8.3, 0.7 Hz, H-8), 7.02 (d, 1 H, J = 8.5 Hz, H-5′), 7.31-7.44 (m, 6 H, H-3,4,5 of 3′,4′-OCH2C6 H 5), 7.45 (br s, 1 H, H-2′), 7.45-7.51 (m, 5 H, H-6′ and H-2,6 of 3′,4′-OCH2C6 H 5), 7.52 (t, 1 H, J = 8.3 Hz, H-7), 12.64 (s, 1 H, 5-OH) ppm. 13C NMR (75.47 MHz, CDCl3): δ = 70.9 (3′-OCH2C6H5), 71.5 (4′-OCH2C6H5), 104.8 (C-3), 106.9 (C-8), 110.7 (C-10), 111.3 (C-6), 112. 8 (C-2′), 114.0 (C-5′), 120.7 (C-6′), 123.9 (C-1′), 127.1 and 127.4 (C-2,6 of 3′,4′-OCH2 C 6H5), 128.11 and 128.13 (C-4 of 3′,4′-OCH2 C 6H5), 128.7 (C-3,5 of 3′,4′-OCH2 C 6H5), 135.2 (C-7), 136.3 and 136.6 (C-1 of 3′,4′-OCH2 C 6H5), 148.8 (C-3′), 152.3 (C-4′), 156.3 (C-9), 160.7 (C-5), 164.3 (C-2), 183.4 (C-4) ppm. MS (EI): m/z (%) = 450 (8) [M+]. HRMS (EI): m/z calcd for C29H22O5: 450.1467; found: 450.1472.

15

Optimised Experimental Procedure A mixture of the appropriate 2′,6′-diaroyloxyacetophenone 3a-c and 4a-c (0.5 mmol) with anhyd K2CO3 (152 mg, 1.1 mmol) in anhyd pyridine (6 mL), was poured in a two-necked glassware apparatus equipped with a magnetic stirring bar, fibre-optic temperature control and reflux condenser, and was then irradiated in an Ethos SYNTH microwave (Milestone Inc.) at constant power of 400 W for 10 min. After that period the reaction mixture was poured into a mixture of ice and water and the pH was adjusted to 3-4 with diluted HCl. The obtained solid was filtered off and recrystallised from EtOH to provide the 3-aroyl-5-hydroxyflavones 5a-c and 6a-c; in several cases a purification by column chromatography was necessary, using CHCl3 as eluent (5a, 70%; 5b, 69%; 5c, 72%; 6a, 72%; 6b, 68%; 6c, 73%).

16

Optimised Experimental Procedure BBr3 (1.5 mol per benzyloxy group) was added to a solution of the appropriate 3-aroyl-5-hydroxyflavone 5c and 6c (0.3 mmol) in anhyd CH2Cl2 (25 mL) at low temperature (-70 °C). After the addition was complete, the cooling system was removed and the reaction mixture was stirred at r.t. for 24 h. Then, H2O (50 mL) was added and the resulting reaction mixture was stirred at r.t. for 2-3 h. The obtained solid was filtered off and washed several times with H2O and CH2Cl2; the expected 3-aroylflavones 7a,b were obtained in good yields (7a, 62%; 7b, 58%).
Physical Data of 3-(3,4-Dihydroxybenzoyl)-3′,4′,5,7-tetrahydroxyflavone ( 7b)
1H NMR (300.13 MHz, DMSO-d 6): δ = 6.25 (d, 1 H, J = 1.9 Hz, H-6), 6.48 (d, 1 H, J = 1.9 Hz, H-8), 6.73 (d, 1 H, J = 8.4 Hz, H-5′), 6.74 (d, 1 H, J = 8.2 Hz, H-5′′), 6.94 (dd, 1 H, J = 8.4, 2.2 Hz, H-6′), 7.06 (d, 1 H, J = 2.2 Hz, H-2′), 7.24 (dd, 1 H, J = 8.2, 2.0 Hz, H-6′′), 7.29 (d, 1 H, J = 2.0 Hz, H-2′′), 9.42, 9.86, and 10.06 (3 s, 4 H, 3′,4′,3′′,4′′-OH), 11.05 (s, 1 H, 7-OH), 12.48 (s, 1 H, 5-OH) ppm. 13C NMR (75.47 MHz, DMSO-d 6): δ = 94.0 (C-8), 99.1 (C-6), 103.0 (C-10), 115.4 (C-2′,2′′), 115.7 (C-5′ and C-5′′), 118.7 (C-3), 120.7 (C-1′), 121.9 (C-6′), 123.2 (C-6′′), 128.8 (C-1′′), 145.4 (C-3′ and C-3′′), 149.2 (C-4′), 151.7 (C-4′′), 157.3 (C-9), 161.3 (C-2), 161.5 (C-5), 164.7 (C-7), 179.9 (C-4), 190.7 (C=O) ppm. MS (ES+): m/z (%) = 445 (63) [M + Na]+.

17

Physical Data of 3′,4′-Dibenzyloxy-3-(3,4-dibenzyloxybenzoyl)-5-hydroxyflavone ( 5c)
1H NMR (300.13 MHz, CDCl3): δ = 4.89 (s, 2 H, 3′-OCH 2C6H5), 5.16 (s, 2 H, 4′-OCH 2C6H5), 5.14 (s, 2 H, 3′′-OCH 2C6H5), 5.21 (s, 2 H, 4′′-OCH 2C6H5), 6.83 (dd, 1 H, J = 8.4, 0.7 Hz, H-6), 6.85 (d, 1 H, J = 8.6 Hz, H-5′), 6.88 (d, 1 H, J = 8.5 Hz, H-5′′), 6.96 (dd, 1 H, J = 8.4, 0.7 Hz, H-8), 7.16 (d, 1 H, J = 2.2 Hz, H-2′), 7.22 (dd, 1 H, J = 8.6, 2.2 Hz, H-6′), 7.23-7.43 (m, 20 H, H-2,3,4,5,6 of 3′,4′,3′′,4′′-OCH2C6 H 5), 7.47 (dd, 1 H, J = 8.5, 2.0 Hz, H-6′′), 7.59 (t, 1 H, J = 8.4 Hz, H-7), 7.59 (d, 1 H, J = 2.0 Hz, H-2′′), 12.23 (s, 1 H, 5-OH) ppm. 13C NMR (75.47 MHz, CDCl3): δ = 70.75 (4′-OCH2C6H5), 70.78 (4′′-OCH2C6H5), 71.0 (3′-OCH2C6H5), 71.2 (3′′-OCH2C6H5), 106.9 (C-8), 110.0 (C-10), 111.7 (C-6), 112.9 (C-5′′), 113.7 (C-5′), 114.1 (C-2′′), 114. 4 (C-2′), 120.0 (C-3), 122.7 (C-6′), 123.7 (C-1′), 125.0 (C-6′′), 127.0, 127.1, and 127.2 (C-2,6 of 3′,4′,3′′,4′′-OCH2 C 6H5), 127.9, 128.0, and 128.1 (C-4 of 3′,4′,3′′,4′′-OCH2 C 6H5), 128.49, 128.51, 128.60, and 128.64 (C-3,5 of 3′,4′,3′′,4′′-OCH2 C 6H5), 130.3 (C1′′), 135.9 (C-7), 136.16, 136.24, 136.4, and 136.6 (C-1 of 3′,4′,3′′,4′′-OCH2 C 6H5), 148.4 (C-3′), 148.8 (C-3′′), 151.8 (C-4′), 154.1 (C-4′′), 156.0 (C-9), 160.8 (C-5), 162.5 (C-2), 181.5 (C-4), 191.2 (C=O) ppm. MALDI-MS: m/z (%) = 789 (100) [M + Na]+.

18

The structural characterisation of 3-aroyl-5-hydroxy-flavones 5a,b is according to the literature (ref. 7).