Eur J Pediatr Surg 2008; 18(1): 7-12
DOI: 10.1055/s-2007-989374
Original Article

© Georg Thieme Verlag KG Stuttgart · New York

3D Perfusion Mapping and Virtual Surgical Planning in the Treatment of Pediatric Embryonal Abdominal Tumors

P. Günther1 , S. Ley2 , 3 , J. Tröger2 , O. Witt1 , 5 , F. Autschbach6 , S. Holland-Cunz1 , J.-P. Schenk2
  • 1Division of Pediatric Surgery, University of Heidelberg, Heidelberg, Germany
  • 2Department of Pediatric Radiology, University of Heidelberg, Heidelberg, Germany
  • 3Department of Radiology, German Cancer Research Center, Heidelberg, Germany
  • 4Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
  • 5CCU Pediatric Oncology, German Cancer Research Center, Heidelberg, Germany
  • 6Institute of Pathology, University of Heidelberg, Heidelberg, Germany
Further Information

Publication History

received September 2, 2007

accepted after revision October 29, 2007

Publication Date:
26 February 2008 (online)

Abstract

Introduction: 3D imaging and surgical planning for the treatment of embryonal tumors using different techniques (CT versus MRI) are presently under discussion. Up to now, the main focus has been on visualizing the anatomy. Contrast medium dynamics have not been taken into consideration. The aim of the present study was to establish the technical means of integrating the 3D images from functional MRI data into the anatomical images and to determine clinical applications for this approach. Material and Methods: In 11 patients (mean age: 2.4 years) with solid tumors, 26 diagnostic MRI examinations were performed for primary diagnosis, treatment monitoring, or as part of the surgical planning. Seven children presented with neuroblastomas, three with Wilms' tumor, and one with advanced bilateral nephroblastomatosis. The MRI data were acquired using a 1.5-T system. For post-processing, we used volume rendering software, including an evaluation of perfusion. By using color-coded parametric images and integrating functional information, perfusion could be visualized and used for interactive surgical planning. Macroscopic and microscopic sections served as the gold standard for assessing tissue viability. Results: We were able to integrate the dynamic data into the anatomical images for all patients. A good agreement was found between the results of surgical planning, including perfusion mapping, with the surgical site, subsequently produced macroscopic sections and the results of random microscopic examinations. Conclusions: Perfusion mapping using color-coded parametric images of pediatric abdominal tumors extends the diagnostic techniques currently available. We provide first proof of the possibility of integrating functional information into 3D MR images in children. Monitoring the treatment of nephroblastoma and surgical planning for pediatric embryonal tumors represent potential applications of this technique.

References

  • 1 Beier J, Büge T, Stroszczynski C, Oellinger H, Fleck E, Felix R. 2D- and 3D‐parameter images for the analysis of contrast medium distribution in dynamic CT and MRI.  Radiologe. 1998;  38 832-840
  • 2 Coll D M, Herts B R, Davros W J, Uzzo R G, Novick A C. Preoperative use of 3D volume rendering to demonstrate renal tumors and renal anatomy.  Radiographics. 2000;  20 431-438
  • 3 Cozzi D A, Zani A. Nephron-sparing surgery in children with primary renal tumor: indications and results.  Semin Pediatr Surg. 2006;  15 3-9
  • 4 Englmeier K H, Griebel J, Lucht R, Knopp M, Siebert M, Brix G. Dynamic MR mammography: multidimensional visualization of contrast enhancement in virtual reality.  Radiologe. 2000;  40 262-266
  • 5 Evers H, Hawighorst H, van Kaick G, Knapstein P G, Meinzer H P. Integration of functional and morphologic MRI data for preoperative 3D visualization of tumors. Example: cervix carcinoma.  Radiologe. 1998;  38 841-847
  • 6 Frericks B B, Caldarone F C, Nashan B, Savello D H, Stamm G, Kirchhoff T D, Shin H O, Schenk A, Selle D, Spindler W, Klempnauer J, Peitgen H O, Galanski M. 3D CT modelling of hepatic vessel architecture and volume calculation in living donated liver transplantation.  Eur Radiol. 2004;  14 326-333
  • 7 Fuchs J, Warmann S W, Szavay P, Kirschner H J, Schäfer J F, Hennemuth A, Scheel-Walter H G, Bourquain H, Peitgen H O. Three-dimensional visualization and virtual simulation of resections in pediatric solid tumors.  J Pediatr Surg. 2005;  40 364-370
  • 8 Grenacher L, Thorn M, Knaebel H P, Vetter M, Hassenpflug P, Kraus T, Meinzer H P, Büchler M W, Kauffmann G W, Richter G M. The role of 3-D imaging and computer-based postprocessing for surgery of the liver and pancreas.  Röfo. 2005;  177 1219-1226
  • 9 Günther P, Waag K L, Tröger J, Schenk J P. MR volumetric analysis of the course of nephroblastomatosis.  Pediatr Radiol. 2004;  34 660-664
  • 10 Günther P, Schenk J P, Wunsch R, Troger J, Waag K L. Abdominal tumors in children: 3D visualization and surgical planning.  Eur J Pediatr Surg. 2004;  14 316-321
  • 11 Günther P, Tröger J, Holland-Cunz S, Waag K L, Schenk J P. Computer-assisted operational planning for pediatric abdominal surgery. 3D‐visualized MRI with volume rendering.  Radiologe. 2006;  46 689-697
  • 12 Koenig M, Kraus M, Theek C, Klotz E, Gehlen W, Heuser L. Quantitative assessment of the ischemic brain by means of perfusion-related parameters derived from perfusion CT.  Stroke. 2001;  32 431-437
  • 13 Lamade W, Glombitza G, Fischer L, Chiu P, Cardenas C E, Thorn M, Meinzer H P, Grenacher L, Bauer H, Lehnert T, Herfarth C. The impact of 3-dimensional reconstructions on operation planning in liver surgery.  Arch Surg. 2000;  135 1256-1261
  • 14 Lamade W, Vetter M, Hassenpflug P, Thorn M, Meinzer H P, Herfarth C. Navigation and image-guided HBP surgery: a review and preview.  J Hepatobiliary Pancreat Surg. 2002;  9 592-599
  • 15 Libicher M, Bernd L, Schenk J P, Mädler U, Grenacher L, Kauffmann G W. Characteristic perfusion pattern of giant cell tumor of bone in dynamic MR imaging.  Radiologe. 2001;  41 577-582
  • 16 Lüdemann L, Grieger W, Wurm R, Wust P, Zimmer C. Comparison of dynamic contrast-enhanced MRI with tumor grading for gliomas.  Eur Radiol. 2001;  11 1231-1241
  • 17 Molinari F, Fink C, Risse F, Tuengerthal S, Bonomo L, Kauczor H U. Assessment of differential pulmonary blood flow using perfusion magnetic resonance imaging: comparison with radionuclide perfusion scintigraphy.  Invest Radiol. 2006;  41 624-630
  • 18 Oldhafer K J, Preim B, Dorge C, Peitgen H O, Broelsch C E. Acceptance of computer-assisted surgery planning in visceral (abdominal) surgery.  Zentralbl Chir. 2002;  127 128-133
  • 19 Pfluger T, Leinsinger G, Sander A, Schmid I, Führer M, Dietz H G, Tiling R, Rossmüller B, Hahn K. Magnetic resonance imaging of benign and premalignant tumors in childhood.  Radiologe. 1999;  39 685-694
  • 20 Rice H E, Frush D P, Harker M J, Farmer D, Waldhausen J H. APSA Education Committee: review of radiation risks from computed tomography: essentials for pediatric surgeon.  J Ped Surg. 2007;  42 603-607
  • 21 Schenk J P, Waag K L, Graf N, Wunsch R, Jourdan C, Behnisch W, Tröger J, Günther P. 3D‐visualization by MRI for surgical planning of Wilms tumors.  Fortschr Röntgenstr. 2004;  176 1447-1452
  • 22 Schenk J P, Günther P, Schrader C, Ley S, Furtwängler R, Leuschner I, Edelhäuser M, Graf N, Tröger J. Childhood kidney tumors - relevance of imaging.  Radiologe. 2005;  45 1112-1123
  • 23 Schnall M D, Blume J, Bluemke D A, DeAngelis G A, DeBruhl N, Harms S, Heywang-Kobrunner S H, Hylton N, Kuhl C K, Pisano E D, Causer P, Schnitt S J, Thickman D, Stelling C B, Weatherall P T, Lehman C, Gatsonis C A. Diagnostic architectural and dynamic features at breast MR imaging: multicenter study.  Radiology. 2006;  238 42-53
  • 24 von Schweinitz D, Hero B, Berthold F. The impact of surgical radicality on outcome in childhood neuroblastoma.  Eur J Pediatr Surg. 2002;  12 402-409

Dr. Patrick Günther

Division of Pediatric Surgery
University of Heidelberg

Im Neuenheimer Feld 110

69120 Heidelberg

Germany

Email: patrick.guenther@med.uni-heidelberg.de

    >