Synthesis 2007(21): 3411-3420  
DOI: 10.1055/s-2007-990835
FEATUREARTICLE
© Georg Thieme Verlag Stuttgart · New York

Electrochemistry and Umpolung Reactions: New Tools for Solving Synthetic Challenges of Structure and Location

Feili Tang, Ceng Chen, Kevin D. Moeller*
Department of Chemistry, Washington University, St. Louis, MO 63130, USA
Fax: +1(314)9354481; e-Mail: moeller@wustl.edu;
Further Information

Publication History

Received 3 September 2007
Publication Date:
16 October 2007 (online)

Abstract

Electrochemistry is a powerful tool for initiating new umpolung reactions. In this paper, two examples are provided. One demonstrates the use of electrochemistry for reversing the polarity of known functional groups and triggering carbon-carbon bond formation. The second demonstrates the use of electrochemistry for reversing the polarity of a chemical reagent, a technique that allows for spatially locating synthetic transformations on addressable chips.

    References

  • For a recent review see:
  • 1a Sperry JB. Wright DL. Chem. Soc. Rev.  2006,  35:  605 
  • For an extensive discussion of electrochemistry as a synthetic tool see:
  • 1b Organic Electrochemistry   4th ed.:  Lund H. Hammerich O. Dekker; New York: 2001. 
  • 2a Nielsen MF. Utley JHP. Reductive Coupling In Organic Electrochemistry   4th ed.:  Lund H. Hammerich O. Dekker; New York: 2001. 
  • 2b Little RD. Schwaebe MK. Top. Curr. Chem.  1996,  185:  1-48  
  • 2c For summaries of recent work see ref. 1a and: Little RD. Moeller KD. Electrochem. Soc. Interface  2002,  11:  36 
  • For a reviews see:
  • 3a Moeller KD. Tetrahedron  2000,  56:  9527 
  • 3b Moeller KD. Top. Curr. Chem.  1996,  185:  49-86  ; in addition to ref. 1a above
  • For a review of early work see ref. 3a. For recent work see:
  • 4a Huang Y. Moeller KD. Tetrahedron  2006,  62:  6536 
  • 4b Brandt JD. Moeller KD. Org. Lett.  2005,  7:  3553 ; and references cited therein
  • 5 Mihelcic J. Moeller KD. J. Am. Chem. Soc.  2004,  126:  9106 
  • 6 Frey DA. Wu N. Moeller KD. Tetrahedron Lett.  1996,  37:  8317 
  • 7 Wright DL. Whitehead CR. Sessions EH. Ghiviriga I. Frey DA. Org. Lett.  1999,  1:  1535 
  • 8a Hughes CC. Miller AK. Trauner D. Org. Lett.  2005,  7:  3425 
  • 8b Miller AK. Hughes CC. Kennedy-Smith JJ. Gradl SN. Trauner D. J. Am. Chem. Soc.  2006,  128:  17057 
  • 9 Frey DA. Reddy SHK. Wu N. Moeller KD. J. Org. Chem.  1999,  64:  2805 
  • 10a Sutterer AC. Moeller KD. J. Am. Chem. Soc.  2000,  122:  5636 
  • 10b Duan S. Moeller KD. Org. Lett.  2001,  3:  2685 
  • 10c Duan S. Moeller KD. J. Am. Chem. Soc.  2002,  124:  9368 
  • 10d Liu B. Duan S. Sutterer AC. Moeller KD. J. Am. Chem. Soc.  2002,  124:  10101 
  • 11a Organic Electrochemistry   4th ed.:  Lund H. Hammerich O. Dekker; New York: 2001.  p.44 
  • 11b Yoshida KI. Electrooxidation in Organic Chemistry: The Role of Cation Radical Intermediates   John Wiley & Sons; New York: 1984.  p.13 
  • 11c Fry AJ. Synthetic Organic Electrochemistry   2nd ed.:  John Wiley & Sons; New York: 1989.  p.37 
  • 12 For a description of the ‘1 K chips’ used here, see: Dill K. Montgomery DD. Wang W. Tsai JC. Anal. Chim. Acta  2001,  444:  69 ; electrode diameter = 92 µM; distance between the Pt electrodes (rectangular cells) = 245.3 µM and 337.3 µM
  • For the use of acid on the chips see:
  • 13a Rossi FM, and Montgomery DD. inventors; WO  0053625. 
  • 13b Maurer K. McShea A. Strathmann M. Dill K. J. Comb. Chem.  2005,  7:  637 
  • For Pd(II) reactions see:
  • 14a Tesfu E. Roth K. Maurer K. Moeller KD. Org. Lett.  2006,  8:  709 
  • 14b Tesfu E. Maurer K. Ragsdale SR. Moeller KD. J. Am. Chem. Soc.  2004,  126:  6212 
  • 14c Tesfu E. Maurer K. McShae A. Moeller KD. J. Am. Chem. Soc.  2006,  128:  70 
  • 15 For a Pd(0) reaction see: Tian J. Maurer K. Tesfu E. Moeller KD. J. Am. Chem. Soc.  2005,  127:  1392 
  • 16 Maurer K. inventors; US  2007065877. For a base-cleavable linker, see:
  • 17 This procedure followed the work of: Smith AB. Lupo AT. Ohba M. Chen K. J. Am. Chem. Soc.  1989,  111:  6648