Asymmetric Rhodium-Catalyzed [4+3] Cycloaddition

Significance: A novel methodology for the asymmetric synthesis of tropanes (a popular natural product scaffold) is described using a rhodiumcatalyzed $[4+3]$ cycloaddition between pyrroles and a vinyldiazoacetate. The reaction tolerates a wide range of substituted pyrroles with good yields and excellent enantioselectivities. The products can be an intermediate or a precursor to an intermediate in several previously reported syntheses of biologically active tropanes.

Comment: The reaction proceeds by a tandem cyclopropanation-Cope rearrangement. The best catalyst for this reaction is $\mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{PTAD})_{4}$, which limits the formation of some commonly observed side products. The reaction temperature is critical to achieve high conversions.

[^0]
[^0]: synfacts Contributors: Mark Lautens, Praew Thansandote
 Synfacts 2007, 11, 1161-1161 Published online: 23.10.2007
 DOI: 10.1055/s-2007-991248; Reg-No.: L11607SF

