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Dear readers,

this new issue of SYNFORM presents
four SYNSTORY articles covering
new exciting developments in organic
chemistry: the construction of quater-
nary carbon stereocenters in a highly
enantiocontrolled manner by means of

a keto ester-ene reaction catalyzed by chiral palladium(II)
complexes reported by the group of Professor Koichi Mika-
mi (Japan), a new strategy for the diastereoselective alky-
lation of prochiral enediolates reported by the group of Dr.
Steve Marsden (UK), a very challenging enantioselective
hydrogenation of tetrasubstituted olefins developed by the
group of Professor Andreas Pfaltz (Switzerland), and last,
but not least, the double-Michael reactions catalyzed by chi-
ral bisphosphines reported by Professor Ohyun Kwon
(USA).
Thanks for your continued interest!
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The asymmetric ene reaction catalyzed by chiral Lewis
acids is one of the most efficient methodologies for atom-eco-
nomical carbon–carbon bond formation. The ene reaction of
silyl enol ethers and carbonyl compounds is synthetically
important as a short access to optically active alcohols with
not only homoallylic but also remaining silyl enol ether
functionality. Although various efficient ene reactions have
been reported, only few reports on the asymmetric version
with silyl enol ethers exist. The group of Professor Koichi
Mikami from the Tokyo Institute of Technology (Japan) is
very active in this field and has previously reported the asym-
metric glyoxylate-ene reaction with trimethylsilyl enol ether

catalyzed by chiral BINOL-Ti complexes to afford chiral β-
hydroxy silyl enol ethers (J. Am. Chem. Soc. 1993, 115,
7039; Tetrahedron Lett. 1997, 38, 579). However, no ene
reaction of silyl enol ethers with ketones to afford quaternary
carbon centers was described. In fact, in the BINOL-Ti cata-
lyst system, the use of a ketone instead of an aldehyde as an
enophile led to lower yield and enantioselectivity.

Recently, the Mikami group introduced late-transition-
metal palladium complexes as Lewis acid catalysts for the
keto ester-ene reaction, which allows for the construction of
β-hydroxy silyl enol ethers possessing a quaternary carbon
center with high enantiocontrol. “The active dicationic palla-
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NEWS AND VIEWS NEWS AND VIEWS NEWS AND VIEWS 

Enantioselective Keto Ester-Ene Reaction Catalyzed by Chi-
ral Dicationic Palladium(II) Complexes to Construct 
Quaternary Carbons
J. Am. Chem. Soc. 2007, 129, 12950–12951
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dium catalyst was generated in situ from a chiral PP*-PdCl2

complex and 2.2 equivalents of AgSbF6 in dichloromethane at
room temperature,” explained Professor Mikami. “The reac-
tion of 1 with 2 by using 0.05 mol% of (S)-SEGPHOS-PdCl2

proceeded smoothly to give (R)-3 in >99% yield with 92% ee
without Mukaiyama aldol-type product 4. Even with the
smallest substrate-to-catalyst ratio (S/C = 10,000), high yield
and enantioselectivity (85% yield, 90% ee) could be obtai-
ned.”

Professor Mikami remarked that “The chiral palladium
complexes are 1) air- and moisture-stable, 2) easily synthesi-
zed, and 3) catalytically very active (up to 0.01 mol%) with
high yield and enantioselectivity.”

“The two-directional hetero-ene-reaction sequence, first
with pyruvate and then with glyoxylate, was attempted by
using a chiral BINOL-Ti catalyst that we have previously
developed for glyoxylate-ene reactions,” continued Professor
Mikami. “Diol (R,S)-6 bearing both quaternary and tertiary
carbon centers was obtained by use of the (S)-BINOL-Ti cata-
lyst in 67% yield and >99% ee after desilylation with TBAF
(dr = 92:8). In contrast, treatment with (R)-BINOL-Ti gave
(R,R)-6 in 61% yield and 97% ee (dr = 91:9).”

“Development of an efficient and practical asymmetric
synthetic process has been one of the most important challen-
ges for modern synthetic chemists,” he concluded. “This
highly active Lewis acid catalysis should find industrial
applications.”

In a commentary to this work, Dr. Matthew Clarke from
the University of St. Andrews (UK) said that “One of the key
issues in the intermolecular ene reactions is the limited scope
caused by the relatively high activation barrier of the reac-
tion. Ketones rarely take part in the reactions: hence the
impact of this paper. Silyl enol ethers are one of the most
reactive ene components and 1,2-keto esters are the most
reactive ketone enophiles, thus explaining why Mikami and
co-workers have succeeded. The reaction is already useful,”
he continued, “but I wonder if this reaction could be extended
more generally to other less activated ketones: perhaps the
authors have already tried… it would be a significant 
achievement if it were possible.” According to Dr. Clarke “A
second attractive part of the paper is the authors’ successful-
ly reducing catalyst loadings to practical levels. In the majrity
of papers on catalytic asymmetric C–C bond-forming reacti-
ons, 1–10 mol% of catalyst are used, and no attempts to redu-
ce this are reported. I am not saying that such studies should
not be published in the top journals,” said Dr. Clarke, “but
that attempts to catalytic turnover numbers should be made,
even if this just ends up as a footnote to state it could not be
achieved. To get the turnover numbers they report is impres-
sive in an ene reaction. The third aspect that is interesting and
could be developed further is the utilization of the products in
a further reaction,” he concluded. “If one just cleaves the 
silicon group off, then the fact this is an ene rather than a
Mukaiyama aldol reaction would just be a mechanistic
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anomaly. It would be interesting to see more work on utilizing
the products (by alkene functionalization), although I appre-
ciate such reactions need very mild conditions due to the sen-
sitivity of the enol ether.”

About the corresponding author. Koichi Mikami is Pro-
fessor of Applied Chemistry at the Tokyo Institute of Tech-
nology. He has received the Chemical Society of Japan Award
(Shinpo-Sho) for asymmetric transmission and asymmetric
synthesis based on [2,3]-Wittig rearrangements (1987), the
IBM award for highly efficient asymmetric catalysis (1995),
and the Ichimura Science Award for industrial application of
asymmetric Friedel–Crafts reactions (2001), and was a Boeh-
ringer Ingelheim Award Lecturer (Université de Montréal,
2002).
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Electrophile-Directed Diastereoselective Alkylation of Pro-
chiral Enediolates 
J. Am. Chem. Soc. 2007, 129, 12600–12601

The control of absolute stereochemistry in the alkylation of
prochiral enolates is an enduring challenge in asymmetric
synthesis in both academic and industrial settings. According
to Dr. Steve Marsden from the University of Leeds (UK)
“Typically this has been achieved by the temporary covalent
attachment of a chiral substituent to the acyl group (the chiral
auxiliary approach), such that the two faces of the resulting
enolate are diastereotopic rather than enantiotopic, and con-
trol of the new stereocenter can be engineered.”

“A logical alternative to this approach would be to exploit
chirality in the electrophilic partner to direct the stereochem-
istry at the newly formed asymmetric center with a truly pro-
chiral enolate,” said Dr. Marsden. “Despite its simplicity,
such a strategy has rarely been successfully utilized in syn-
thesis. Only two prior examples are known for simple β-chi-
ral primary electrophiles and have used enolates derived from
heteroaromatic systems, most notably in Overman’s elegant
applications of oxindole enolates in alkaloid synthesis (J. Am.
Chem. Soc. 2004, 126, 14043).” Recently, the first examples

of such reactions using simple acyclic enolates were reported
by Dr. Marsden and Rebecca Newton.

Building on earlier work detailing the construction of qua-
ternary hydroxyamides by alkylation of dienediolates derived
by double deprotonation of α-ketoamides (Synthesis 2005,
3263), Marsden and Newton investigated reactions using pro-
tected primary iodohydrins as the electrophile. “These reac-
tions turned out to be highly stereoselective, generally ranging
from 9:1 to >32:1 dr,” explained Dr. Marsden. “A series of
experiments probing substituent effects revealed that the
reaction was quite general, provided that (a) the enolate was
substituted at the nucleophilic carbon with a lithiated oxygen,
and (b) the electrophile contained an oxygen function β to the
carbon undergoing substitution. This led to the proposition
that the reaction proceeds through a chair-like transition state
held together by coordination of the lithioalkoxy group of the
enolate to the alkoxy group on the electrophile.”

Dr. Marsden explained that “The key advantage of the
method is the ready availability of small chiral building

Prof. K. Mikami Dr. K. Aikawa
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blocks for use as the electrophiles, either from chiral pool
materials or by catalytic asymmetric synthesis. Any chiral
auxiliary strategy routinely adds two steps to a synthesis –
attachment and removal of the auxiliary – and for those cases
where a chiral electrophile is employed we can now sidestep
these.” 

Additionally, the Marsden group investigated what would
happen if the leaving group and directing oxygen function on
the electrophile were reversed, i.e. use of a secondary iodohy-
drin derivative. “This would allow the direct construction of
challenging motifs containing adjacent quaternary and tertia-
ry asymmetric centers,” he said. They found that a highly ste-
reoselective transformation took place, the outcome of which
was consistent with the model proposed for the primary elec-
trophiles above.

“With an understanding of some of the basic principles of
the diastereoselective alkylations in place,” concluded Dr.
Marsden, “my group is now investigating the use of different

nucleophilic and electrophilic components to determine the
true scope of the process, as well as the application of the
methods in target synthesis.”

About the authors. Steve Marsden received his undergra-
duate and postgraduate training at Imperial College London
(UK), obtaining his PhD in 1993 for work with Professor Ste-
ven Ley CBE, FRS. Following one year in the laboratories of
Professor Samuel Danishefsky at Columbia University (USA)
as a NATO postdoctoral fellow, he took up a lectureship at
Imperial College London, before moving to his present posi-
tion as a Reader in Organic Chemistry at the University of
Leeds (UK) in 2001. He was a recipient of the Meldola medal
of the Royal Society of Chemistry in 1998.

Bec Newton graduated from the University of Bristol
(UK) and worked in process chemistry at GlaxoSmithKline
before moving to the University of Leeds to study for her
PhD, which was awarded to her in 2007.
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Dr. S. P. Marsden

Matteo Zanda
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Iridium-Catalyzed Asymmetric Hydrogenation of Unfunc-
tionalized Tetrasubstituted Olefins
Angew. Chem. Int. Ed. 2007, 46, 8274–8276

The enantioselective hydrogenation of unfunctionalized
olefins is a useful tool for organic chemists, and opens new
routes for producing enantioenriched chiral compounds.

“Although rhodium- and ruthenium-catalyzed hydrogena-
tions are well established, both metals require functional
groups near to the C=C double bond, to which the metal can
coordinate,” explained Professor Andreas Pfaltz, an expert in
the enantioselective hydrogenation of olefins from the
Department of Chemistry at the University of Basel (Switzer-
land). “Hence, these catalysts cannot be used for the enantio-
selective hydrogenation of unfunctionalized olefins. Buch-
wald and co-workers introduced chiral early-transition-metal

catalysts (Ti, Zr) that allowed for the reduction of tri- and
tetrasubstituted unfunctionalized olefins with very high enan-
tioselectivities. The high sensitivity of early-transition-metal

complexes to moisture and air and unfavorable reaction con-
ditions (up to 117 bar, 5–8 mol% catalyst loading, 13–65 h
reaction time) prevented widespread use of these catalysts.”

In 1998, Professor Pfaltz and his group introduced air- and
moisture-stable chiral iridium catalysts for the enantioselec-
tive hydrogenation of unfunctionalized olefins and showed
that these catalysts are highly active in the hydrogenation of
several classes of trisubstituted olefins. “Applying these cata-
lysts to olefin 5 gave only a moderate enantiomeric excess of

SYNSTORIES A18
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81%,” said Professor Pfaltz. “For many years 81% remained
the highest enantiomeric excess that had been obtained for
this tetrasubstituted olefin. Many catalysts even showed very
low activity towards the substrate, leading us to assume that
tetrasubstituted unfunctionalized olefins are an unreactive
class of substrates.”

“We envisaged that sterically less demanding ligands
would facilitate the olefin coordination to the metal,” said
Professor Pfaltz. “Until recently, we concentrated on ligands
that form a six-membered ring with the iridium center (e.g.,
ligands 1–3). During Eva Neumann’s Ph.D. thesis work, she
applied a ligand structure in the synthesis of new iridium
catalysts which had previously been used by Helmchen in
allylic alkylation reactions. These ligands (4) form a five-
membered chelate and therefore open the coordination the
sphere around the iridium.” While the enantiomeric excesses
obtained with most new catalysts in the hydrogenation of tri-
substituted olefins were comparable with, or worse than,
those obtained with other catalysts developed by the Pfaltz

group, all new complexes showed high activity in the hydro-
genation of olefin 5, with some giving enantiomeric excesses
higher than 90%.

“Eva Neumann finished her Ph.D. thesis and left the group
to work for Novartis in Basel,” recalled Professor Pfaltz. “At
this time Marcus Schrems joined the group and took over
from this point onwards. He found that not only the new five-
membered-ring-chelate complexes (Ir-4) were active in the
hydrogenation of various tetrasubstituted unfunctionalized
olefins, but also other catalysts previously prepared in the
group gave high activity and excellent ee values.” 

However, most significant was probably the discovery that
low hydrogen pressures had a very positive effect, when cata-
lysts bearing ligands of type 4 were used. “Within three
hours, olefin 5 was hydrogenated at only one bar of hydrogen
pressure. This demonstrates the user-friendly nature of our
catalyst system,” said Professor Pfaltz.
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“As we could show for the reduction of tricycle 17, full
conversion and very high enantiomeric excesses can be 
reached using catalyst loadings as low as 0.1 mol%.” The
hydrogenation of 17 reflects a significant application of these
iridium catalysts in the hydrogenation of unfunctionalized
tetrasubstituted olefins. A variety of natural compounds exhi-
bit structural motifs similar to 18. 

“However, synthesizing two adjacent stereocenters in only
one step is a difficult problem. Banwell and co-workers, for
example, recently synthesized the tetracyclic carbon frame-
work of the gibberellins from a racemic methoxy-substituted
derivative of 18,” explained Professor Pfaltz. “Our method-
ology could be used to generate enantiomerically enriched
compounds of this class. In subsequent studies we showed
that Ir-catalyzed hydrogenation is a highly effective way to
perform transformations of this type. The remarkably high
catalytic activity of our iridium catalysts, even towards noto-
riously unreactive substrate classes, and the option to intro-
duce two adjacent stereogenic centers in a single step open up
new possibilities in asymmetric synthesis,” he concluded.
“We hope that the method presented by our group inspires
other scientists to make use of Ir-catalyzed enantioselective
hydrogenation for otherwise difficult transformations.” 

About the authors. Andreas Pfaltz was born in Basel
(Switzerland) in 1948. He received a diploma in natural sci-
ences and a Ph.D. from the ETH Zürich (Switzerland). After
completing his thesis under the direction of Albert Eschenmo-
ser in 1978, he joined the research group of Gilbert Stork at
Columbia University (USA) as a postdoctoral fellow. In 1980
he returned to the ETH where he was appointed ‘Privatdo-
zent’ (Lecturer) in 1987. From 1990–1995, he was Professor
of Organic Chemistry at the University of Basel, and from
1995–1998, Director at the Max-Planck-Institut für Kohlen-
forschung in Mülheim an der Ruhr (Germany). In 1999 he
returned to the University of Basel where he is currently Pro-
fessor of Organic Chemistry. His main interests are in the
areas of homogeneous and heterogeneous catalysis, with spe-
cial emphasis on asymmetric catalysis.

Marcus G. Schrems was born in Groß-Umstadt (Germa-
ny) in 1979. He studied chemistry at the Technische Univer-
sität München (TUM, Germany), National University of Sin-
gapore and Universtiy of Bergen (Norway) and graduated
from TUM in 2005 after completing his Diploma thesis under
the direction of R. Anwander and W. A. Herrmann. In 2006,
he joined the lab of Andreas Pfaltz at the University of Basel.
He is currently working on the Ir-catalyzed enantioselective
hydrogenation of unfunctionalized olefins, focusing on tetra-
substituted olefins.

Eva Neumann was born in Hannover (Germany) in 1974.
She studied chemistry at the Technische Universität München
(Germany) and the Ecole Supérieure CPE Lyon (France). In
2002 she joined Andreas Pfaltz’ group at the University of
Basel where she completed her doctoral thesis on “Transition
Metal Complexes with P,N-Ligands and Silylenes: Synthesis
and Catalytic Studies”. Since March 2006, she has been wor-
king as Process Manager at Novartis in Basel.
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Prof. A. Pfaltz M. G. Schrems

Dr. E. Neumann

Matteo Zanda
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Asymmetric Synthesis of Oxazolidines, Thiazolidines and
Pyrrolidines via Bisphosphine-Catalyzed Mixed Double-
Michael Reactions
J. Am. Chem. Soc. 2007, 129, 12928–12929

Tertiary phosphines catalyze a diverse array of reactions,
including the Morita–Baylis–Hillman (MBH) reaction,
Michael addition, aldol condensation, acylation of alcohols,
silylcyanation of aldehydes, isomerization of olefins and ace-
tylenes, conjugate addition of alcohols to propiolates, and
allylic substitution.1 “Inspired by Lu’s pioneering use of all-
enes to extend the single-C–C bond-forming MBH reaction
into a [3+2] cycloaddition, our group has been engaged in the
development of phosphine-catalyzed annulations of alleno-
ates with electrophiles such as alkenes, imines, and alde-
hydes,” said Professor Ohyun Kwon from the Department of
Chemistry and Biochemistry of the University of California,
Los Angeles (USA). “These reactions produce carbo- and
heterocycles regio- and diastereoselectively; gratifyingly, the
use of chiral phosphines induces highly enantioselective
annulations.”2 The structural motifs obtained from these
cycloadditions – tetrahydropyridines, dihydropyrroles,
dioxanylidenes, 2-pyrones, dihydro-2-pyrones, dihydrocou-
marins, and coumarins – are encountered frequently in natu-
ral products and pharmaceuticals.

“While continuing to expand the scope of these allenoate-
based phosphine-catalyzed annulations,” continued Professor
Kwon, “we also wished to spearhead the development of new
types of phosphine-catalyzed reactions.” One such reaction is
the mixed double-Michael reaction of a 1,n-bisnucleophile
and an activated acetylene (i.e., a 1,1-dielectrophile). “Alt-
hough there were reports of double-carbo-,  -thia-,  -oxa-, and
-aza-Michael reactions,3 prior to our investigation there were
no examples of mixed double-Michael reactions proceeding
in the absence or presence of phosphine catalysts,” Kwon

said. “Knowing that the reaction of a propiolate with an alco-
hol in the presence of a phosphine does not produce a β-di-
alkoxy ester, our challenge was to succeed in forming the elu-
sive second bond. Our initial attempts at performing these
reactions – involving the inexpensive and ubiquitous PPh3 as
the catalyst – met with only marginal success; under most
conditions the major product was the single-Michael adduct
2. Clearly, the β-phosphonium α-carbanion 1 favored the dis-
engagement of the phosphine to release the single-Michael
product 2,” explained Professor Kwon. “Although we propo-
sed in our paper a mechanism through which adduct 1 under-
goes proton transfer to form the sulfonamide anion, which
directly displaces the phosphine to form the cyclized product,
we did not exclude a scenario in which the intermediate 1 acts
as a general base to deprotonate the single-Michael adduct 2.”
The resulting (sulfonamide) anion 3 can then undergo cycli-
zation to form a phosphonium-enolate ion pair 4, which
deprotonates another single-Michael adduct 2 to regenerate
the phosphonium-sulfonamide ion pair 3. “In either scena-
rio,” Kwon said, “we recognized that the stability of the phos-
phonium adducts 1, 3, and 4 was the key to the viability of the
cyclization event.”

SYNSTORIES A21

Scheme 1

Scheme 2
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“The discouraging performance of even the most basic and
nucleophilic phosphine, PMe3,” Kwon continued, “led us to
consider the use of diphosphines, inspired by Verkade’s
reports of proazaphosphatrane performing as a superior base4

and Trost’s use of dppp in Umpolung additions.5 Gratifyingly,
dppp promoted the exclusive formation of the cyclic adducts
and also converted isolated single-Michael adducts into de-
sired cyclic products.” To identify the role of the second
phosphine moiety, Professor Kwon and her group tested the
catalytic performance of a series of bis(diphenylphos-
phino)alkanes containing linkers of various lengths. The opti-
mum catalyst efficiency occurred for a tether length of three
methylene groups; the behavior of dppm was similar to that
of PPh3. “These findings support the idea of anchimeric assi-
stance by the second phosphine to stabilize the phosphonium
center, rather than to act as a general base,”5 said Professor
Kwon. “We suspect that the second phosphine in dppp adopts
the apical position in a trigonal bipyramidal arrangement
around the stabilized phosphonium center (A in Figure 1).
This conformation is reminiscent of the structure of Verkade’s
proazaphosphatrane.”

According to Professor Kwon “The mixed double-Michael
protocol is remarkably simple and atom-economical; it mini-
mizes the generation of chemical waste and utilizes extreme-
ly mild reaction conditions. Our reaction methodology
employs a catalytic amount (10 mol%) of dppp as the only
additive and a slight excess of the bisnucleophile. Although
our paper describes the syntheses of representative oxazolidi-
nes, thiazolidines, and pyrrolidines from amino acid derived
β-amino alcohols, β-amino thiols, and γ-amino malonates,
respectively, the potential product scope is vast.” The two
pronucleophiles can be connected in a variety of ways, for-
ming isolated or fused heterocycles (see Figure 2). 

“Because the starting materials were derived from enantio-
merically pure amino acids, we obtained products that were
optically pure,” explained Professor Kwon. “We suspect that
enantioselective variants of these reactions could be perfor-
med, however, when using chiral bisphosphines.” Unlike
their common application as ligands in transition-metal cata-

lysis, the advantages of using bidentate bisphosphines in
nucleophilic organocatalysis are less obvious, and have been
reported only rarely. “Chiral phosphorus-based ligands are
the foundation of enantioselective transition-metal catalysis,”
said Professor Kwon. “In particular, chiral bidentate phos-
phorus-based ligands (e.g., DIPAMP and BINAP) are the key
components of asymmetric hydrogenations, which were
recognized by the Nobel Prize in Chemistry in 2001. In con-
trast, the only known highly enantioselective nucleophilic
phosphine catalyses employ monophosphines.2 With our reac-
tion specifically requiring a bisphosphine – with anchimeric
assistance providing a rigid architecture reminiscent of that of
the ligands in metal–bisphosphine complexes – our reaction
provides a testing ground for enantioselective chiral bisphos-
phine catalysis. More than anything, we hope that our paper
demonstrates the synthetic power of burgeoning nucleophilic
phosphine catalysis and contributes to the popularization of
asymmetric nucleophilic phosphine catalyses, particularly
those using bisphosphines.”

The manuscript describing this study was submitted seven
months after Dr. “Murthy” Vardhineedi began performing
research in Kwon’s laboratory. “The efficiency with which
Murthy worked on this project was the highest that I have
ever seen,” said Professor Kwon. “The whole experience was
a delight – and working with him continues to be so. Murthy
(Ph.D. in 2006) joined us from Professor V. K. Yadav’s group
at the Indian Institute of Technology, Kanpur. Having a first-
year graduate student, Gregg Barcan, on board expedited the
completion of the reported work.” 

According to Janine Cossy, Professor of Organic Chem-
istry from the Ecole Supérieure de Physique et Chimie Indu-
strielles de Paris (France) and an Associate Editor of Organic
Letters, “This work by Kwon et al. deals with a simple and
efficient protocol to access disubstituted oxazolidines, thiazo-
lidines and pyrrolidines in a very diastereoselective way,
using a mixed Michael process catalyzed by bisphosphines.”
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Figure 1

Figure 2
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