Category

Synthesis of Heterocycles

Key words

azabicyclo[3.3.0]octane

tungsten catalysis vinylidenes

Y. ONIZAWA, H. KUSAMA, N. IWASAWA* (TOKYO INSTITUTE OF TECHNOLOGY, JAPAN)

Efficient Control of π -Alkyne and Vinylidene Complex Pathways for the W(CO)₅(L)-Catalyzed Synthesis of Two Types of Nitrogen-Containing Bicyclic Compounds

J. Am. Chem. Soc. 2008, 130, 802-803.

W(CO)₅-Catalyzed Synthesis of 2- and 3-Azabicyclo[3.3.0]octanes

Significance: Reported is a tungsten-catalyzed regioselective synthesis of 3-azobicyclo[3.3.0]-octane and 2-azobicyclo[3.3.0]octane derivatives $\bf C$ and $\bf D$ from π -acetylenic dienol silyl ether $\bf 1$. The reaction proceeds via different pathways $\bf a$ and $\bf b$ as a function of base. Thus, the initial vinylidene complex $\bf A$ undergoes double cyclizations and nitrogen facilitated 1,2-alkyl migration to lead to product $\bf C$. This mechanism is substantiated by $\bf 1^3C$ - as indicated and D-labeled experiments. In the absence of base, the tungsten-catalyzed process is envisaged to proceed via the zwitterionic intermediates $\bf B$ to lead to products $\bf D$. None of the intermediates were isolated.

Comment: The 2- and 3-azabicyclo[3.3.0]octane framework is found as part of bioactive molecules, for example in the inhibitor of DPP II (O. Danilova et al. *Bioorg. Med. Chem. Lett.* 2007, *17*, 507). Traditionally, 3-azobicyclo[3.3.0]octane and 2-azabicyclo[3.3.0]octane derivatives are constructed respectively by reaction of dicarboxylic acid derivatives with amines (T. Punniyamurthy, T. Katsuki *Tetrahedron* 1999, *55*, 9439) or intramolecular cyclization of 2-(2-bromoethyl)cyclopentamines (H. Booth et al. *J. Chem. Soc.* 1959, 1050). The present methodology constitutes a new catalytic route to both heterocyclic systems which proceeds in useful synthetic yields.

SYNFACTS Contributors: Victor Snieckus, Wei Gan Synfacts 2008, 4, 0356-0356 Published online: 19.03.2008 **DOI:** 10.1055/s-2008-1042863; **Reg-No.:** V03008SF