Synthesis 2008(17): 2669-2679  
DOI: 10.1055/s-2008-1067220
REVIEW
© Georg Thieme Verlag Stuttgart ˙ New York

Diastereo- and Enantioselective Reductive Aldol Addition of Vinyl Ketones via Catalytic Hydrogenation

Soo Bong Han, Abbas Hassan, Michael J. Krische*
University of Texas at Austin, Department of Chemistry and Biochemistry, 1 University Station A5300, Austin, TX 78712-0165, USA
Fax: +1(512)4718696; e-Mail: mkrische@mail.utexas.edu;
Further Information

Publication History

Received 29 February 2008
Publication Date:
06 August 2008 (online)

Abstract

An overview of studies on hydrogenative reductive aldol addition is presented. By simply hydrogenating enones in the presence of aldehydes at ambient temperature and pressure, aldol adducts are generated under neutral conditions in the absence of any stoichiometric byproducts. Using cationic rhodium complexes modified by tri(2-furyl)phosphine, highly syn-diastereoselective reductive aldol additions of vinyl ketones are achieved. Finally, using novel monodentate TADDOL-like phosphonite ligands, the first highly diastereo- and enantioselective reductive aldol couplings of vinyl ketones were devised. These studies, along with other works from our laboratory, demonstrate that organometallics arising transiently in the course of catalytic hydrogenation offer byproduct-free alternatives to preformed organometallic reagents employed in classical carbonyl addition processes.

1 Introduction

2 Intramolecular Hydrogenative Aldol Addition

3 Intermolecular Hydrogenative Aldol Addition

4 Conclusion and Outlook

    References

  • Though largely attributed to Wurtz, the aldol reaction was reported first by Borodin:
  • 1a von Richter V. Ber. Dtsch. Chem. Ges.  1869,  2:  552 ; (Borodin’s earliest results are cited in this article)
  • 1b Wurtz A. Bull. Soc. Chim. Fr.  1872,  17:  436 
  • 1c Borodin A. Ber. Dtsch. Chem. Ges.  1873,  6:  982 
  • 1d See also: Kane R. Ann. Phys. Chem., Ser. 2  1838,  44:  475 
  • For selected reviews on stereoselective aldol additions, see:
  • 2a Heathcock CH. Science  1981,  214:  395 
  • Heathcock CH. In Asymmetric Reactions and Processes in Chemistry, ACS Symposium Series   Vol. 185:  Eliel EL. Otsuka S. American Chemical Society; Washington DC: 1982.  p.55 
  • 2c Evans DA. Nelson JV. Taber TR. Top. Stereochem.  1982,  13:  1 
  • 2d Machajewski TD. Wong C.-H. Angew. Chem. Int. Ed.  2000,  39:  1352 
  • 2e Palomo C. Oiarbide M. García JM. Chem. Soc. Rev.  2004,  33:  65 
  • For reviews, see:
  • 3a Trost BM. Science  1991,  254:  1471 
  • 3b Trost BM. Angew. Chem., Int. Ed. Engl.  1995,  34:  259 
  • 4a Wender PA. Miller BL. Org. Synth. Theor. Appl.  1993,  2:  27 
  • 4b Wender PA. Handy S. Wright DL. Chem. Ind.  1997,  767 
  • 5For recent reviews on the use of organic catalysts for direct enantioselective aldol addition, see:
  • 5 Shibasaki M. Matsunaga S. Kumagai N. In Modern Aldol Reactions   Vol. 2:  Mahrwald R. Wiley-VCH; Weinheim: 2004.  p.197 
  • For a recent review on the use of metallic catalysts for direct enantioselective aldol additions, see:
  • 6a List B. In Modern Aldol Reactions   Vol. 1:  Mahrwald R. Wiley-VCH; Weinheim: 2004.  p.161 
  • 6b Notz W. Tanaka F. Barbas CF. Acc. Chem. Res.  2004,  37:  580 
  • 7a Notz W. List B. J. Am. Chem. Soc.  2000,  122:  7386 
  • 7b Yoshikawa N. Kumagai N. Matsunaga S. Moll G. Ohshima T. Suzuki T. Shibasaki M. J. Am. Chem. Soc.  2001,  123:  2466 
  • 7c Trost BM. Ito H. Silcoff ER. J. Am. Chem. Soc.  2001,  123:  3367 
  • 8 Sakthivel K. Notz W. Bui T. Barbas CF. J. Am. Chem. Soc.  2001,  123:  5260 
  • 9a Using amides of l-proline, direct catalyzed aldol coupling of 2-butanone to p-nitrobenzaldehyde affords mixtures of regioisomeric products: Tang Z. Yang Z.-H. Chen X.-H. Cun L.-F. Mi A.-Q. Jiang Y.-Z. Gong L.-Z. J. Am. Chem. Soc.  2005,  127:  9285 
  • 9b Higher levels of branched regioselectivity are obtained using organo-catalysts derived from diaminocyclohexane: Luo S. Lu H. Li J. Zhang L. Cheng J.-P. J. Am. Chem. Soc.  2007,  129:  3074 
  • 10 Yoshikawa N. Yamada YMA. Das J. Sasai H. Shibasaki M. J. Am. Chem. Soc.  1999,  121:  4168 
  • 11a House HO. Czuba LJ. Gall M. Olmstead HD. J. Org. Chem.  1969,  34:  2324 
  • 11b Kraft ME. Holton RA. Tetrahedron Lett.  1983,  24:  1345 
  • 12 For a review, see: Velluz L. Valls J. Nomine G. Angew. Chem. Int. Ed.  1965,  4:  181 
  • 13a Corey EJ. Sneen RA. J. Am. Chem. Soc.  1955,  77:  2505 
  • 13b Berkoz B. Chavez EP. Djerassi C. J. Chem. Soc.  1962,  1323 
  • 13c Mazur Y. Sondheimer F. J. Am. Chem. Soc.  1958,  80:  6296 
  • 14a Stork G. Rosen P. Goldman NL. J. Am. Chem. Soc.  1961,  83:  2965 
  • 14b Stork G. Rosen P. Goldman N. Coombs RV. Tsuji J. J. Am. Chem. Soc.  1965,  87:  275 
  • For recent reviews on the reductive aldol reaction, see:
  • Huddleston RR. Krische MJ. Synlett  2003,  12 
  • 15b Nishiyama H. Shiomi T. Top. Curr. Chem.  2007,  279:  105 
  • 15c Garner S. Han SB. Krische MJ. In Modern Reductions   Andersson P. Munslow I. Wiley-VCH; Weinheim: 2008.  p.387-408  
  • For rhodium-catalyzed reductive aldol reactions mediated by silane, see:
  • 16a Revis A. Hilty TK. Tetrahedron Lett.  1987,  28:  4809 
  • Matsuda I. Takahashi K. Sato S. Tetrahedron Lett.  1990,  31:  5331 
  • 16c Taylor SJ. Morken JP. J. Am. Chem. Soc.  1999,  121:  12202 
  • 16d Taylor SJ. Duffey MO. Morken JP. J. Am. Chem. Soc.  2000,  122:  4528 
  • 16e Zhao C.-X. Bass J. Morken JP. Org. Lett.  2001,  3:  2839 
  • 16f Emiabata-Smith D. McKillop A. Mills C. Motherwell WB. Whitehead AJ. Synlett  2001,  1302 
  • 16g Freiría M. Whitehead AJ. Tocher DA. Motherwell WB. Tetrahedron  2004,  60:  2673 
  • 16h Nishiyama H. Shiomi T. Tsuchiya Y. Matsuda I. J. Am. Chem. Soc.  2005,  127:  6972 
  • 16i Willis MC. Woodward RL. J. Am. Chem. Soc.  2005,  127:  18012 
  • 16j Fuller NO. Morken JP. Synlett  2005,  1459 
  • 16k Ito JI. Shiomi T. Nishiyama H. Adv. Synth. Catal.  2006,  348:  1235 
  • 16l Shiomi T. Ito J.-I. Yamamoto Y. Nishiyama H. Eur. J. Org. Chem.  2006,  5594 
  • 16m Shiomi T. Nishiyama H. Org. Lett.  2007,  9:  1651 
  • For rhodium-catalyzed reductive aldol reactions mediated by hydrogen, see:
  • 17a Jang HY. Huddleston RR. Krische MJ. J. Am. Chem. Soc.  2002,  124:  15156 
  • 17b Huddleston RR. Krische MJ. Org. Lett.  2003,  5:  1143 
  • 17c Koech PK. Krische MJ. Org. Lett.  2004,  6:  691 
  • 17d Marriner GA. Garner SA. Jang HY. Krische MJ. J. Org. Chem.  2004,  69:  1380 
  • 17e Jung CK. Garner SA. Krische MJ. Org. Lett.  2006,  8:  519 
  • 17f Han SB. Krische MJ. Org. Lett.  2006,  8:  5657 
  • 17g Jung CK. Krische MJ. J. Am. Chem. Soc.  2006,  128:  17051 
  • 17h Bee C. Han SB. Hassan A. Iida H. Krische MJ. J. Am. Chem. Soc.  2008,  130:  2747 
  • For cobalt-catalyzed reductive aldol reactions, see:
  • 18a Isayama S. Mukaiyama T. Chem. Lett.  1989,  2005 
  • Baik TG. Luis AL. Wang LC. Krische MJ. J. Am. Chem. Soc.  2001,  123:  5112 
  • 18c Wang LC. Jang H.-Y. Roh Y. Lynch V. Schultz AJ. Wang X. Krische MJ. J. Am. Chem. Soc.  2002,  124:  9448 
  • 18d Lam HW. Joensuu PM. Murray GJ. Fordyce EAF. Prieto O. Luebbers T. Org. Lett.  2006,  8:  3729 
  • 18e Lumby RJR. Joensuu PM. Lam HW. Org. Lett.  2007,  9:  4367 
  • 19 For iridium-catalyzed reductive aldol reaction, see: Zhao CX. Duffey MO. Taylor SJ. Morken JP. Org. Lett.  2001,  3:  1829 
  • 20 For ruthenium-catalyzed reductive aldol reaction, see: Doi T. Fukuyama T. Minamino S. Ryu I. Synlett  2006,  3013 
  • 21 For palladium-catalyzed reductive aldol reaction, see: Kiyooka SI. Shimizu A. Torii S. Tetrahedron Lett.  1998,  39:  5237 
  • For copper-promoted reductive aldol reaction, see:
  • 22a Chiu P. Chen B. Cheng KF. Tetrahedron Lett.  1998,  39:  9229 
  • Chiu P. Synthesis  2004,  2210 
  • For copper-promoted reductive intramolecular Henry reaction, see:
  • 22c Chung WK. Chiu P. Synlett  2005,  55 
  • For copper-promoted and -catalyzed reductive cyclizations of α,β-acetylenic ketones tethered to ketones, see:
  • 22d Chiu P. Leung SK. Chem. Commun.  2004,  2308 
  • For copper-catalyzed reductive aldol reaction, see:
  • 23a Ooi T. Doda K. Sakai D. Maruoka K. Tetrahedron Lett.  1999,  40:  2133 
  • 23b Lam HW. Joensuu PMA. Org. Lett.  2005,  7:  4225 
  • 23c Lam HW. Murray GJ. Firth JD. Org. Lett.  2005,  7:  5743 
  • 23d Deschamp J. Chuzel O. Hannedouche J. Riant O. Angew. Chem. Int. Ed.  2006,  45:  1292 
  • 23e Chuzel O. Deschamp J. Chauster C. Riant O. Org. Lett.  2006,  8:  5943 
  • 23f Zhao D. Oisaki K. Kanai M. Shibasaki M. Tetrahedron Lett.  2006,  47:  1403 
  • 23g Zhao D. Oisaki K. Kanai M. Shibasaki M. J. Am. Chem. Soc.  2006,  128:  14440 
  • 23h Welle A. Diez-Gonzalez S. Tinant B. Nolan SP. Riant O. Org. Lett.  2006,  8:  6059 
  • For nickel-catalyzed reductive aldol reaction, see:
  • 24a Chrovian CC. Montgomery J. Org. Lett.  2007,  9:  537 
  • 24b Joensuu PM. Murray G. J. Fardyce EA. F. Luebbers T. Lam HW. J. Am. Chem. Soc.  2008,  130:  7328 
  • 25 For a reductive aldol coupling employing stoichiometric quantities of indium reagent, see: Inoue K. Ishida T. Shibata I. Baba A. Adv. Synth. Catal.  2002,  344:  283 
  • For indium-catalyzed reductive aldol reaction, see:
  • 26a Shibata I. Kato H. Ishida T. Yasuda M. Baba A. Angew. Chem. Int. Ed.  2004,  43:  711 
  • 26b Miura K. Yamada Y. Tomita M. Hosomi A. Synlett  2004,  1985 
  • 27 Roelen O. inventors; German Patent DE  849548.  (Chemische Verwertungsgesellschaft mbH, Oberhausen) ; Chem. Abstr. 1944, 38, 5501
  • 28a Fischer F. Tropsch H. Brennst.-Chem.  1923,  4:  276 
  • Fischer F. Tropsch H. Chem. Ber.  1923,  56:  2428 
  • 29a Molander GA. Hoberg JO. J. Am. Chem. Soc.  1992,  114:  3123 
  • 29b Kokube K. Miura M. Nomura M. Organometallics  1995,  14:  4521 
  • Side products of reductive carbon-carbon bond formation have been observed in catalytic hydrogenation on rare occasion:
  • Moyes RB. Walker DW. Wells PB. Whan DA. Irvine EA. In Catalysis and Surface Characterization (Special Publication)   Vol. 114:  Dines TJ. Rochester CH. Thomson J. Royal Society of Chemistry; London: 1992.  p.207 
  • 30b Bianchini C. Meli A. Peruzzini M. Vizzi F. Zanobini F. Frediani P. Organometallics  1989,  8:  2080 
  • For recent reviews on hydrogen-mediated C-C coupling, see:
  • 31a Ngai M.-Y. Krische MJ. Chim. Oggi/Chemistry Today  2006,  24(4):  12 ; (chiral technologies supplement)
  • Iida H. Krische MJ. Top. Curr. Chem.  2007,  279:  77 
  • 31c Ngai M.-Y. Kong J.-R. Krische MJ. J. Org. Chem.  2007,  72:  1063 
  • 31d Skucas E. Ngai M.-Y. Komanduri V. Krische MJ. Acc. Chem. Res.  2007,  40:  1394 
  • 32 Zimmerman HE. Traxler MD. J. Am. Chem. Soc.  1957,  79:  1920 
  • Monohydride catalytic cycles initiated via deprotonation of cationic rhodium dihydrides have been postulated:
  • 33a Schrock RR. Osborn JA. J. Am. Chem. Soc.  1976,  98:  2134 
  • 33b Schrock RR. Osborn JA. J. Am. Chem. Soc.  1976,  98:  2143 
  • 33c Schrock RR. Osborn JA. J. Am. Chem. Soc.  1976,  98:  4450 
  • For reviews on the heterolytic activation of elemental hydrogen, see:
  • 34a Brothers PJ. Prog. Inorg. Chem.  1981,  28:  1 
  • See also:
  • 34b Jeske G., Lauke H., Mauermann H., Schumann H., Marks T. J.; J. Am. Chem. Soc.; 1985, 107: 8111
  • 35 For a review of the acidity of metal hydrides, see: Kristjansdottir SS. Norton JR. In Transition Metal Hydrides   Dedieu A. VCH; Weinheim: 1992.  p.309 
  • 36 Yachi K. Shinokubo H. Oshima K. J. Am. Chem. Soc.  1999,  121:  9465 
  • 37 Arnett EM. Fisher FJ. Nichols MA. Ribeiro AA. J. Am. Chem. Soc.  1989,  111:  748 
  • The failure of tris(dialkylamino)sulfonium enolates to react with aldehydes is attributed to unfavorable enolate-aldolate equilibria:
  • 38a Noyori R. Sakata J. Nishizawa M. J. Am. Chem. Soc.  1980,  102:  1223 
  • 38b Noyori R. Nishida I. Sakata J. J. Am. Chem. Soc.  1981,  103:  2106 
  • 38c Noyori R. Nishida I. Sakata J. J. Am. Chem. Soc.  1983,  105:  1598 
  • For tri(2-furyl)phosphine and triphenylarsine effects in metal-catalyzed reactions, see:
  • 39a Farina V. Krishnan B. J. Am. Chem. Soc.  1991,  113:  9585 
  • 39b Farina V. Pure Appl. Chem.  1996,  68:  73 
  • 39c Anderson NG. Keay BA. Chem. Rev.  2001,  101:  997 
  • For TADDOL-derived phosphonites, see:
  • 41a Seebach D. Hayakawa M. Sakaki J.-I. Schweizer WB. Tetrahedron  1993,  49:  1711 
  • 41b Sakaki J.-I. Schweizer WB. Seebach D. Helv. Chim. Acta  1993,  76:  2654 
  • 41c Haag D. Runsink J. Scharf H.-D. Organometallics  1998,  17:  398 
  • For recent examples of hydrogenative C-C couplings developed in our laboratory, see:
  • 42a Kong J.-R. Ngai M.-Y. Krische MJ. J. Am. Chem. Soc.  2006,  128:  718 
  • 42b Skucas E. Kong J.-R. Krische MJ. J. Am. Chem. Soc.  2007,  129:  7242 
  • 42c Barchuk A. Ngai M.-Y. Krische MJ. J. Am. Chem. Soc.  2007,  129:  8432 
  • 42d Barchuk A. Ngai M.-Y. Krische MJ. J. Am. Chem. Soc.  2007,  129:  12644 
  • 42e Skucas E. Bower JF. Krische MJ. J. Am. Chem. Soc.  2007,  129:  12678 
  • For recent examples of transfer hydrogenative C-C couplings developed in our laboratory, see:
  • 43a Bower JF. Skucas E. Patman RL. Krische MJ. J. Am. Chem. Soc.  2007,  129:  15134 
  • 43b Bower JF. Patman RL. Krische MJ. Org. Lett.  2008,  10:  1033 
  • 43c Shibahara F. Bower JF. Krische MJ. J. Am. Chem. Soc.  2008,  130:  6338 
  • 43d Kim IS. Ngai M.-Y. Krische MJ. J. Am. Chem. Soc.  2008,  130:  6340 
40

Consistent with internal hydride delivery to the enone s-cis conformer through a six-centered transition structure, enones constrained in the s-trans configuration, such as cyclohexenone, do not participate in hydrogenative reductive aldol coupling.