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Abstract

v

A fundamental question addressed by drug de-
velopment programs is how agents being tested
function on a molecular level. Using resveratrol,
curcumin and EGCG as examples, it is clear that
a definitive mechanism of action for cancer che-
mopreventive agents is not available despite dec-
ades of exhaustive research. This is profoundly
evident based on the myriad of biological respon-
ses that have been observed at the cellular level,
and even more overwhelming when considering
gene expression data that are now available. The
situation is confounded further when chemopre-
ventive agents are used in combination, even
though superior clinical responses are anticipa-

ted. The best hope for delineating tangible,
meaningful mechanisms resides in the use of
complex physiological systems and computer
models to decipher the most critical pathways
that are appropriate for targeting with chemo-
preventive agents, their analogues, and combina-
tion treatments. Definitive answers concerning
clinical efficacy are only available through hu-
man trials. Given the enormity of these tasks, to-
gether with the urgency of continuing the fight
against cancer, it is adequate to move ahead
with chemopreventive drug development on a
semi-empirical basis, bearing in mind the impor-
tance of limiting toxic side effects.

Introduction

v

For individuals less than 65 years of age, cancer is
now the leading cause of death in the United
States [1]. Since this disease may stealthily pro-
gress for a decade or more prior to diagnosis,
and only limited routine and robust early diag-
nostic markers are known, at risk individuals are
advised to take preventive measures. Some can-
cer chemoprevention agents are available having
the ability to prevent, delay, or reverse the risk of
cancer development and/or progression. Those
approved by the U.S. FDA include selective estro-
gen receptor modulators (SERMS), aromatase in-
hibitors, and celecoxib. In the general population,
a diet highly enriched in fruits and vegetables
may have preventative value; examples of natu-
ral products that show promise as cancer chemo-
preventive agents include epigallocatechin gal-
late (EGCG), capasaicin, resveratrol, curcumin, 6-
gingerol, and lycopene [2], [3], [4].
Chemopreventive compounds can be identified in
various ways. Some are isolated from plants with
known medicinal properties, largely gleaned from

Francy-Guilford Jet al. Mechanisms of Cancer... Planta Med 2008; 74: 1644-1650

epidemiological studies, while others are identi-
fied in massive screens of libraries of randomly
collected samples. Irrespective of the method of
identification, compounds with chemopreven-
tive promise are ultimately purified and subject-
ed to structure elucidation. Although structure
identification is an important first step, it usually
does not provide an explanation as to why a par-
ticular compound is active. Answering this ques-
tion is exceedingly complex.

Considering pharmaceutical agents that have been
discovered throughout history, only a few are be-
lieved to have a clearly defined mechanism of ac-
tion. For example, penicillin inhibits the formation
of peptidoglycan cross-links in bacterial cell walls,
5-fluorouracil serves as a pyrimidine analogue,
taxol stabilizes tubulin, tamoxifen is an SERM,
and methotrexate interferes with one-carbon me-
tabolism. Identifying a clearly defined mechanism
of action for the majority of drugs, however, is the
equivalent of finding a single needle in multiple
haystacks, all equally complex. In most cases, the
very composition of each haystack is largely un-
characterized or even yet undiscovered.
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The complexity of mechanistic definition is particularly appa-
rent with cancer chemopreventive agents. As described herein,
the anticancer effects observed from a single chemopreventive
agent are the outcome of a combination of several distinct sets
of intracellular effects, rather than limited to one established
biological pathway. To elaborate on the mechanistic complexi-
ty of chemopreventive agents, as examples, we have surveyed
the reported mechanisms of action of three compounds: res-
veratrol, curcumin, and EGCG. Presently, it is clear that a
meaningful sequence of critical mechanistic events cannot be
defined in a straightforward manner. These three chemicals
also exemplify the structural diversity of chemopreventive
agents (© Fig.1).

Resveratrol

v

Resveratrol is a stilbene that is found in several plants, the pri-
mary dietary source being grapes. It can function as a chemopre-
ventive agent capable of inhibiting all stages of cancer develop-
ment. Modes of action identified for resveratrol include induc-

OH

HO
OH

resveratrol (frans-3,4',5-trihydroxystilbene)

[0} (o]
AN =
HO OH
OCH; OCH,
curcumin
OH
OH

HO O

OH

4y, »

(6]
OH OH
o
OH
OH
epigallocatechin gallate (EGCG)

Fig.1 Structures of resveratrol (trans-3,4’,5-trihydroxystilbene), curcu-
min, and epigallocatechin gallate (EGCG).

Perspective RIZE)

tion of phase II drug-metabolizing enzymes, inhibition of cyclo-
oxygenase (COX), and cellular differentiation [5]. Resveratrol in-
hibits cytochrome P450, cell invasion, transformation, and an-
giogenesis [6]. Resveratrol has been shown to up-regulate anti-
oxidant enzymes, such as glutathione peroxidase, catalase and
quinone reductase. It inhibits lipid peroxidation, ornithine de-
carboxylase (ODC), protein kinases, and cellular proliferation
[7]. Resveratrol effectively induces apoptosis modulated
through multiple pathways including up-regulation of p53, acti-
vation of caspases, decreases in Bcl-2 and Bcl-x%, increases in
Bax, inhibition of D-type cyclins, and interference with NF-«B
and AP-1 mediated cascades [8].

A multitude of in vitro and in vivo studies implicate resveratrol in
a large web of anticancer pathways (recently reviewed in [8],
[9]). Resveratrol treatment resulted in growth arrest at G1 and
G1/S phases of the cell cycle by inducing the expression of p21
and p27 [10]. It reduced inflammation via inhibition of prosta-
glandin production and COX-2 activity. Resveratrol has been
shown to regulate cathepsin D, inhibit hypoxia-induced protein,
and down-regulate telomerase. Resveratrol pretreatment sup-
pressed activation of ERK2, JNK and p38 in association with in-
hibition of protein kinase C (PKC) and protein tyrosine kinase
[11]. Resveratrol blocked activation of NF-xB through suppres-
sion of IxB activation, inhibited activation of MEK, and abrogated
TNF-induced caspase activation.

Curcumin

v

Curcumin (diferuloylmethane), a yellow pigment from the rhi-
zomes of turmeric, has been recognized as a chemopreventive
agent due to its antitumor, antioxidant, antiproliferative, and
proapoptotic effects. Curcumin suppresses transformation, pro-
liferation, angiogenesis, and metastasis. Similar to resveratrol,
curcumin mediates its anticancer effects through regulation of
various transcription factors, growth factors, inflammatory cyto-
kines, and protein kinases (reviewed in [12]).

Many mechanisms of action for curcumin have been identified,
including modulation of the expression of genes involved in pro-
liferation, apoptosis, invasion, metastasis, angiogenesis, and re-
sistance to chemotherapy [13], [14]. Curcumin inhibits cell-cell
adhesion and blocks cell cycle transition from G2 to M [15]. It
suppresses cytochrome P450 and decreases P-glycoprotein ex-
pression [16], [17], [18]. Curcumin inhibits the catalytic activity
of ERK1/2, activates caspases 8 and 3, down-regulates cyclin D1,
suppresses the activation of NF-kB, AKT-PI3K, AP-1, STATs, TNF,
MAPK, PKC, and modulates the expression of PPAR-y, B-catenin,
and Nrf-2 [13], [19], [20], [21], [22]. Curcumin inhibits histone
acyltransferase [23] and down-regulates the expression of p53,
EGR-1 and c-myc [24]. Curcumin treatment activates proapop-
totic members of the Bcl-2 family and reduces the activity of
EGFR and HER2/neu [25]. Curcumin up-regulates enzymes such
as catalase, glutathione transferase, glutathione peroxidase, and
superoxide dismutase (SOD). Curcumin inhibits production of
IL-8 by tumor cells and augments the cytotoxic effects of chemo-
therapeutic drugs [26].

Epigallocatechin Gallate (EGCG)

v

EGCG is an antioxidant polyphenol that is found in green tea. It
exhibits a wide variety of anticancer properties, including inhib-
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ition of extracellular mitotic signals, inhibition of the cell cycle at
G1 phase, suppression of iNOS, and induction of apoptosis (re-
viewed in [27]). ECGC has been reported to inhibit invasion and
angiogenesis, processes that are essential for tumor growth and
metastasis [28]. Similar to resveratrol and curcumin, mecha-
nisms contributing to the anticarcinogenic and antimutagenic
effects of EGCG include antioxidant activity, induction of phase
Il enzymes, blocking carcinogen formation, inhibition of carcino-
gen binding to DNA, and inhibition of DNA synthesis and cell
proliferation [29], [30], [31]).

EGCG has been reported to act through a myriad of mechanisms
[27]. It suppresses MMP-9 secretion and phosphorylation of fo-
cal adhesion kinase and ODC activity. EGCG activates caspases 3
and 9, SOD activity, and catalase activity. EGCG inhibits DNA
synthesis [29], MAPK signaling [32], NF-«B activity, STAT3, PI3K
activation [33], [34], raf, MEK, ERK, JNK, p38 kinase, EGFR, and
Ik [27]. EGCG reduces signaling via P13K-AKT-NF-xB mediated
through inhibition of ERBB2 receptor tyrosine phosphorylation
[35]. EGCG causes GO/G1-phase arrest and induction of apopto-
sis in human epidermoid carcinoma cells, but not in normal hu-
man epidermal keratinocytes, indicating that at least some of its
antiproliferative effects are cancer-cell specific [36].

Microarray Analyses

\4

Of the chemopreventive agents examined above, several targets
are modulated by each of the three, such as NF-«B. Should we
conclude that NF-xB is a critical target? Another possibility is
there is investigator bias towards examining effects on the NF-
kB pathway, and other, possibly undiscovered, targets are not be-
ing considered. Perhaps hypothesis-driven research is limiting
the ability to discover the unexpected, and we are only discover-
ing mechanisms that we are seeking. One way to limit investiga-
tor bias is to perform microarray studies, which have also been
used to confirm existing hypotheses. The results from selected
microarray experiments involving resveratrol, curcumin, and
EGCG are summarized in © Table1. Column three lists how
many genes exhibited a greater than two-fold up- or down-reg-
ulation, although it should be recognized that lesser-fold
changes may also have biological significance. Columns four
and five contain a sampling of commonly recognized genes.

In the first example, microarray analyses were performed to
identify genes that are regulated by resveratrol in androgen-sen-
sitive prostate cancer cells (LNCaP), human ovarian cancer cells
(PA-1), and renal cell carcinoma cells (RCC54). The most com-

Table1 Microarray results from selected studies involving treatment with resveratrol, curcumin, or EGCG

Chemopreventive Cell Type, 2xChange Genes Genes Ref
Agent Dose, Time Up-Regulated Down-Regulated
Resveratrol LNCaP 555 of 2400 P300 (5.09) PPAR (0.3) [10]
100 uM Glutathione transferase (2.91) NFxB p65 (0.47)
48 h Bak protein (2.14) Phospholipase D (0.31)
Pig7 (2.27) TGFb (0.12)
CRABPI (2.1)
Resveratrol LNCaP 553 of 2,400 PIG7 (2.23) PSA (0.10) [37]
100 uM Bak (2.16) ARA 24 (0.01)
24,48h p21(2.7) NF«B p65 (0.47)
p300 (5.09) PPAR (0.3)
Apaf-1(4.4)
Glutathione reductase (2.9)
Resveratrol LNCaP 1,600 of 42,000 Quinone reductase PSA [38]
75,150 uM Phase Il enzymes AR
0-60h Cyclins D, E, A, B
Resveratrol RCC54 633 0f 2059 GADD45 (3.07) [39]
25,50 uM CRABP 1 (3.28)
24h TRAF-1 (1.58)
Protein-tyrosine
phosphatase (1.4)
Rb binding protein 1 (4.7)
Resveratrol PA-1 118 of 7448 NQO-1(12.4) [40]
50 uM p21 (4.6)
24 h
Curcumin ECV304 27 of 2400 p21WAF1/CIP1 cyclinB1 [41]
1 ug/mL p53 cdc2
24 h
Curcumin Cl=5 152 0f 9600 Hsp27(2.78) MMP14 (0.65) [42]
10 uM Hsp70(3.75) Neuronal cell adhesion
24 h Hsp40-like protein (3.21) molecule (0.54)
Integrin a6 (0.67)
Integrin B4 (0.63)
Curcumin MCEF-7 104 of 214 TRAF6, GADDA45, TRAIL, TNFR, AP13, IGFBP3, [43]
25,50 ug/mL BCL2L2, PIG11, PIG3, PKB, IGFBP,
24 h PCNA, CDC10, JNK1, RBP2 TRAIL-R2, TNFj
EGCG LNCaP 25 of 250 Protein-tyrosine PKC alpha [44]
12 uM phosphatase PI13K homolog
12h
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prehensive of these studies identified 1,600 genes that were up-
or down-regulated more than two-fold following a single treat-
ment with resveratrol. Changes were reported in genes regulat-
ing apoptosis (Bak, Apaf-1), differentiation, signal transduction
(CRABP II, TRAF-1), proliferation (protein tyrosine phosphatase),
transcription factors, cell adhesion, tumor suppression (Rb bind-
ing protein), cell cycle (p300), growth factors (TGFB, GADD45),
p53 (PIG7, NQO-1, p65 NF-«xB homologue, p21), and GST (gluta-
thione transferase). Specifically in prostate cancer cells, resvera-
trol induced apoptosis by activating p53 signaling mechanisms
and by blocking androgen signaling pathways including pros-
tate-specific antigen (PSA) and the androgen receptor (AR). Col-
lectively, these results confirm that resveratrol modulates more
than one set of functionally related targets.

Microarray studies performed with cells treated with curcumin or
EGCG treatment yielded similarly complex results, confirming
these agents modulate gene expression through multiple path-
ways involving hundreds of genes or more. Curcumin up-regulat-
ed cyclin dependent kinase (CDK) inhibitors, such as p21 and p27,
and down-regulated cyclin B1 and cdc2 [41]. A study following
curcumin treatment in a lung adenocarcinoma model indicated
that several invasion-related genes were suppressed, including
matrix metalloproteinase 14 (MMP14), neuronal cell adhesion
molecule, and integrins. Additionally, several heat-shock proteins
(hsp) were induced. Gene expression was altered up to 14-fold in
breast cancer MCF-7 cells as compared to only 1.5-fold in the
MCF-10A normal breast cell line following treatment, indicating
that curcumin is capable of selectively suppressing the growth of
cancer cells. A microarray study of kinases and phosphatases us-
ing LNCaP cells indicated that EGCG induced a subset of genes in-
hibiting cell growth, mostly belonging to the G-protein signaling
network. PKCo, the only PKC isoform implicated in cancer, was re-
pressed while the other PKC isoforms were not affected.

These microarray data are limited by the number of genes on the
arrays themselves and the quality of the data mining analysis.
Newer technologies enable single chip genome-wide expression
analysis using oligonucleotide or cDNA microarrays to measure,
in a massively parallel fashion, the mRNA levels of many or all
genes in a genome. Such genome-wide expression analysis has
successfully been used to investigate the regulatory networks
controlling a variety of cellular processes in yeast [45]. However,
functional interpretation of microarray data remains limited by
multiple protein products of each mRNA, posttranslational mod-
ifications, protein-protein interactions, protein-DNA interac-
tions, protein-RNA interactions, RNA-RNA interactions, and
methylation state. Additionally, most genes have several alterna-
tive transcripts and many also have alternative promoters [46].
Furthermore, amplification of signaling pathways could be
more critical than mRNA or even protein abundance alone.

Combination Chemoprevention

v

Analyzing the effects of chemopreventive agents using genome-
wide or proteome-wide analysis would allow investigators to
predict multi-target approaches involving more than one che-
mopreventive agent. The combination drug approach was first
successful in treating tuberculosis with a cocktail of antibiotics,
each with a different mechanism of action. Such an approach is
now standard in cancer chemotherapy, where different drugs
given in combination reduce the likelihood that a tumor devel-
ops resistance to a particular treatment. It is logical to extend

Perspective RIZY]

this approach to the field of chemoprevention, especially if we
consider that dietary chemopreventive agents are naturally
present in the diet in combination. © Table 2 lists the results
from a selection of studies retrieved during a literature search
that report the effects of treatment with combinations of che-
mopreventive agents.

As a whole, the results indicate that combination treatment is
more effective than single-agent treatment. This is presumably
due to simultaneously attacking tumor development on multi-
ple fronts, which reduces the ability of a tumor cell to develop
resistance to a single treatment. Treatment with agents that act
synergistically allows for reduced dosing of individual agents,
which can reduce single-agent toxic effects and make chemo-
preventive levels more easily attainable in the diet. For example,
combination treatment with low doses of cholesterol-lowering
statins, celecoxib (COX-2 inhibitor), DFMO (polyamine inhibi-
tion), and NSAIDs were successful. Diallyl sulfide, found in garlic,
was effective in preventing tumor development when given in
combination with either quercetin (anti-inflammatory) or Se-
methylselenocysteine (raf/MEK/ERK inhibitor). Combination
treatments with agents that exhibit a broad spectrum of chemo-
preventive mechanisms, such as curcumin/EGCG or curcumin/
quercetin were also successful. Indole-3-carbinol, found in cru-
ciferous vegetables and having anticarcinogenic, antioxidant,
and anti-atherogenic effects, was chemopreventive when paired
with putrescine, a polyamine. Combination treatment with all-
trans-N-(4-hydroxyphenyl)retinamide  (antiproliferative/pro-
apoptotic) and tamoxifen (modulator of growth factors/hormo-
nal activity) targeted multiple mechanisms at once. Other suc-
cessful combinations include ellagic acid (antioxidant/proapop-
totic) given with selenomethionine (antioxidant), urodeoxycho-
late paired with sulindac, DFMO with piroxicam, tomato with
garlic, and beta-carotene in combination with vitamin E.

The observed anticancer benefits resulting from treatments with
combinations of chemopreventive agents indicate that a diet rich
in as many of these compounds as possible is a reasonable ap-
proach. However, this approach may not always be possible, espe-
cially in developing countries. It is necessary to determine the
most affordable and available combinations that are effective
against the broadest range of targets as possible. This needs to be
addressed at the mechanistic level. At this time, we are not certain
if the observed synergistic responses are due to perceived mecha-
nisms or other factors that have not been identified or realized.

Systems Biology

v

The individual mechanisms that have been proposed to date as
being important in defining the action of chemopreventive
agents are important pieces of a yet incomplete puzzle. It has be-
come apparent that such mechanisms are too complex to be un-
derstood using the classic reductionist approach of identifying
linear pathways. Such a narrow approach was historically neces-
sitated due to experimental limitations. The evolution of large-
scale, high-throughput technologies has led to a paradigm shift
away from reductionism in favor of systems biology. In collabo-
ration with mathematicians and computer scientists, biologists
have created complex algorithms to identify clusters of path-
ways, or networks, representing extensive interactions among
different components from the subcellular to organism level
[58]. Systems biology offers the field of cancer chemoprevention
the potential to identify comprehensive mechanisms of action
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Table2 Combination treatments involving chemopreventive agents

Agents Model

Celecoxib Colon cancer

DFMO

Statins

NSAIDs

EGCG Normal, premalignant and malignant
Curcumin human oral epithelial cells
Curcumin Adenomas in familial adenomatous
Quercetin polyposis

Indole-3-carbinol SW480 colon tumor cell line
Putrescine

Ursodeoxycholate Mouse model of polyposis
Sulindac

All-trans-N- N-Methyl-N-nitrosourea treated rats
(4-hydroxyphenyl)retinamide

Tamoxifen

DFMO Azoxymethane-induced colonic
Piroxicam neoplasias

Diallyl sulfide DMBA-induced mammary tumor
Se-methylselenocystelne

Ellagic acid DMBA-induced mammary tumor

Selenomethionine

Diallyl sulfide DMBA-induced mammary tumor
Quercetin

Tomato Male Swiss albino mice

Garlic

S-Allylcysteine Gastric cancer
Lycopene
Beta-carotene

Vitamin E

Oral cancer

involving a multitude of interactions. Both new and preexisting
data derived from a broad spectrum of experimental models can
be processed in this way to confirm the importance of existing
mechanisms as well as to define new mechanistic pathways.

Conclusions

v

At the present time, we submit that the key mechanism by which
any known chemopreventive agent mediates a reduction in tu-
morigenesis remains ill-defined. The situation is even more con-
founded in combination chemopreventive work. Most studies
performed to date have examined in vitro activities. Results from
in vivo studies often show much more modest benefits, stemming
from problems of bioavailability, toxicity, and physiological dosing
limitations. In a typical case, irrespective of perceived mechanism,
the biological and physiological complexity of a mammal is re-
quired to establish efficacy. Moreover, even animal models are
not sufficient to predict efficacy in human beings. The failure of
B-carotene in clinical trials [59] well exemplifies this point.

As illustrated with resveratrol, curcumin and EGCG, a great deal
can be learned about the mode of action of a chemopreventive
agent. It may be, however, that a critical, straightforward path-
way leading to the chemoprevention of cancer will never be
known. It may be necessary to finally accept a superb therapeu-
tic response as being empirical in nature and due to a fortuitous
sequence of events leading to a good outcome. Of utmost impor-
tance is the ability to facilitate a predicable clinical response in
the absence of toxicity.
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Findings Reference
Combinations at low dosages inhibit [47]
carcinogenesis more effectively and

with less toxicity than if given alone

Synergistically inhibit cell growth [48]
Decreased number and size of polyps [49]
Synergistically caused growth inhibition [50]
and necrosis

Prevents intestinal adenomas at lower [51]
doses than with sulindac alone, less toxicity
Synergistically prevent tumor recurrence [52]
Synergistically reduces the number, size, [53]
and incidence of colon tumors

Combination regimen more effective [54]
than single-agent

Combination regimen more effective [54]
than single-agent

Combination regimen more effective [54]
than single-agent

Combination regimen more effective [55]
than the single-agent in inhibiting DMBA-

induced genotoxicity and oxidative stress

Modulatory effects on glutathione redox [56]
cycle antioxidants

Combination treatment results in [57]

regression of oral leukoplakia

Nonetheless, it is clear that many contemporary basic and clini-
cal scientists, as well as health authorities and regulatory agents,
will not find the proposition of empiricism to be sufficiently sat-
isfying. In order to realistically approach a true definition of crit-
ical mechanism, we suggest the greatest hope lies in exploring
the action of chemopreventive agents and analogues on a ge-
nome-wide and proteome-wide scale. Large data sets generated
in such experiments require proper analysis and interpretation,
which is not a trivial task. This presents a conundrum since
modern-day science is not capable of simply disregarding the
molecular mechanism leading to a favorable therapeutic out-
come and then proceeding with confidence. This is fundamen-
tally equivalent to accepting the untenable philosophy of igno-
rance is bliss. Certainly, a great deal of work remains to be done
for the accurate definition of chemopreventive mode of action,
but we should be willing to forge ahead on a semi-empirical ba-
sis in our fight against this dreadful disease.
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