Synthesis of Natural Products and Potential Drugs

Key words

caryophyllene
planar chirality
CBS reduction
Grob fragmentation

Corey-Bakshi-Shibata reduction

F

E

THF, r.t.
61\%

都

B

J 84\%
 $86 \%, \mathrm{dr}=15: 1$

A
from Hajos-Parrish reaction

I, $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{ClO}_{4}^{-}(10 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$
then DIBAL, $-78^{\circ} \mathrm{C}$; then $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$, r.t.

Significance: The synthesis of β-caryophyllene and coraxenolide A by Larionov and Corey is distinctive because it is a rare example of the use of planar chirality in natural product synthesis. Both enantiomers of (2Z,6E)-6-methylcyclonona-2,6dienone (\mathbf{H}) were prepared and used as chiral precursors for the synthesis of the (-)- β-caryophyllene and coraxeniolide A .

Comment: The absence of stereoselectivity in the reduction of \mathbf{C} with NaBH_{4} was overcome by using the CBS reduction. Planar chiral \mathbf{H} was obtained as a single enantiomer that is stable against racemization at room temperature owing to restricted C-C bond rotation in the 9-membered ring. By contrast, cyclononene racemizes in a few minutes at room temperature.

[^0]
[^0]: synfacts Contributors: Philip Kocienski, Arndt W. Schmidt
 Synfacts 2008, 8, 0783-0783 Published online: 23.07.2008 DOI: 10.1055/s-2008-1077896; Reg-No.: K07708SF

