Synlett 2008(11): 1651-1656  
DOI: 10.1055/s-2008-1078484
LETTER
© Georg Thieme Verlag Stuttgart · New York

A Novel Solid-Phase Synthetic Method for 1,4-Benzodiazepine-2,5-dione Derivatives

Moon-Kook Jeon*, Jeong-Jin Kwon, Myung-Su Kim, Young-Dae Gong
Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon, 305-600, Korea
Fax: +82(42)8607694; e-Mail: moteta@krict.re.kr;
Further Information

Publication History

Received 18 March 2008
Publication Date:
11 June 2008 (online)

Abstract

Utilizing polymer-bound anthranilic acid derivatives 1, we were able to obtain the 1,4-benzodiazepine-2,5-dione derivatives 3 (R3 = H, R4 = H, MeO, Cl) through an unprecedented reaction sequence, reductive alkylation-N-protected amino acid coupling-deprotective cyclization, in 28-71% five-step overall isolated yields and 95-99% purities from Wang resin 4. Applying the novel protocol to the resin 2, the 7-benzamido-1,4-benzodiazepine-2,5-dione derivatives 3 (R1 = Bn, R4 = 7-BzNH) could be obtained in 19-42% seven- or eight-step overall isolated yields and 92-98% purities from AMEBA resin 7.

    References and Notes

  • 1 Dolle RE. Le Bourdonnec B. Goodman AJ. Morales GA. Salvino JM. Zhang W. J. Comb. Chem.  2007,  9:  855 
  • 2a Jeon M.-K. La HJ. Ha D.-C. Gong Y.-D. Synlett  2007,  1431 
  • 2b Jeon M.-K. Kim D.-S. La HJ. Ha D.-C. Gong Y.-D. Tetrahedron Lett.  2005,  46:  7477 
  • 2c Jeon M.-K. Kim D.-S. La HJ. Gong Y.-D. Tetrahedron Lett.  2005,  46:  4979 
  • 3 For a general reference for 1,4-benzodiazepines, see: Tucker H. Le Count DJ. 1,4-Diazepines, In Comprehensive Heterocyclic Chemistry II   Vol. 9:  Katritzky AR. Rees CW. Scriven EFV. Pergamon; Oxford: 1996.  p.151-182  
  • 4a McDowell RS. Blackburn BK. Gadek TR. McGee LR. Rawson T. Reynolds ME. Robarge KD. Somers TC. Thorsett ED. Tischler M. Webb RR. Venuti MC. J. Am. Chem. Soc.  1994,  116:  5077 
  • 4b Blackburn B, Barker P, Gadek T, McDowell R, McGee L, Somers T, Webb R, and Robarge K. inventors; Int. Patent, WO  9308174.  ; Chem. Abstr. 1994, 120, 217745
  • 4c Blackburn B, Olivero AG, and Robarge K. inventors; Int. Patent, WO  9846576.  ; Chem. Abstr. 1998, 129, 316247
  • 4d Claremon DA, and Liverton N. inventors; Int. Patent, WO  9422825.  ; Chem. Abstr. 1995, 122, 56059
  • 4e Parks DJ. LaFrance LV. Calvo RR. Milkiewicz KL. Gupta V. Lattanze J. Ramachandren K. Carver TE. Petrella EC. Cummings MD. Maguire D. Grasberger BL. Lu T. Bioorg. Med. Chem. Lett.  2005,  15:  765 
  • 4f Marugan JJ. Leonard K. Raboisson P. Gushue JM. Calvo R. Koblish HK. Lattanze J. Zhao S. Cummings MD. Player MR. Schubert C. Maroney AC. Lu T. Bioorg. Med. Chem. Lett.  2006,  16:  3115 
  • 4g Leonard K. Marugan JJ. Raboisson P. Calvo R. Gushue JM. Koblish HK. Lattanze J. Zhao S. Cummings MD. Player MR. Maroney AC. Lu T. Bioorg. Med. Chem. Lett.  2006,  16:  3463 
  • 4h Koblish HK. Zhao S. Franks CF. Donatelli RR. Tominovich RM. LaFrance LV. Leonard KA. Gushue JM. Parks DJ. Calvo RR. Milkiewicz KL. Marugan JJ. Raboisson P. Cummings MD. Grasberger BL. Johnson DL. Lu T. Molloy CJ. Maroney AC. Mol. Cancer Ther.  2006,  5:  160 
  • 4i Kamal A. Laxman N. Ramesh G. Neelima K. Kondapi AK. Chem. Commun.  2001,  437 
  • 4j Kamal A. Ramesh G. Laxman N. Ramulu P. Scrinivas O. Neelima K. Kondapi AK. Sreenu VB. Nagarajaram HA. J. Med. Chem.  2002,  45:  4679 
  • 4k Nakatani S. Yamamoto Y. Hayashi M. Komiyama K. Ishibashi M. Chem. Pharm. Bull.  2004,  52:  368 
  • 4l Machii D, Umehara H, Yamashita Y, Suda T, Miki I, Ambrosi H, and Frormann S. inventors; Int. Patent, WO  2005040172.  ; Chem. Abstr. 2005, 142, 447237
  • 4m Zilg C, Mulhaupt R, and Finter J. inventors; Int. Patent, WO  2001004193.  ; Chem. Abstr. 2001, 134, 116623
  • 4n Loudni L. Roche J. Potiron V. Clarhaut J. Bachmann C. Gesson J.-P. Tranoy-Opalinski I. Bioorg. Med. Chem. Lett.  2007,  17:  4819 
  • 4o Ettmayer P. Chloupek S. Weigand K. J. Comb. Chem.  2003,  5:  253 
  • 4p Chen X, Chen X, Connors RV, Dai K, Fu Y, Jaen JC, Kim Y.-J, Li L, Lizarzaburu ME, Mihalic JT, and Shuttleworth SJ. inventors; Int. Patent, WO  2006020959.  ; Chem. Abstr. 2006, 144, 350725
  • 4q Cheng M.-F. Yu H.-M. Ko B.-W. Chang Y. Chen M.-Y. Ho T.-I. Tsai Y.-M. Fang J.-M. Org. Biomol. Chem.  2006,  4:  510 
  • 5a Tapia RA. Centella CR. Valderrama JA. Synth. Commun.  1999,  29:  2163 
  • 5b Karp GM. J. Org. Chem.  1995,  60:  5814 
  • 5c Thurston DE. Jones GB. Davis ME. J. Chem. Soc., Chem. Commun.  1990,  874 
  • 5d Kamal A. Reddy PSMM. Reddy DR. Tetrahedron Lett.  2002,  43:  6629 
  • 5e Sugimori T. Okawa T. Eguchi S. Kakehi A. Yashima E. Okamoto Y. Tetrahedron  1998,  54:  7997 
  • 5f Molina P. Díaz I. Tárraga A. Tetrahedron  1995,  51:  5617 
  • 5g He F. Foxman BM. Snider BB. J. Am. Chem. Soc.  1998,  120:  6417 
  • 5h Akssira M. Boumzebra M. Kasmi H. Dahdouh A. Roumestant ML. Viallefont P. Synth. Commun.  1993,  23:  2265 
  • 5i Akssira M. Boumzebra M. Kasmi H. Dahdouh A. Roumestant ML. Viallefont P. Tetrahedron  1994,  50:  9051 
  • 6a Faggi C. Marcaccini S. Pepino R. Pozo MC. Synthesis  2002,  2756 
  • 6b Lindhorst T. Bock H. Ugi I. Tetrahedron  1999,  55:  7411 
  • 6c Hulme C. Peng J. Tang S.-Y. Burns CJ. Morize I. Labaudiniere R. J. Org. Chem.  1998,  63:  8021 
  • 6d Keating TA. Armstrong RW. J. Org. Chem.  1996,  61:  8935 
  • 6e Keating TA. Armstrong RW. J. Am. Chem. Soc.  1996,  118:  2574 
  • 7a Hu W.-P. Wang J.-J. Lin F.-L. Lin Y.-C. Lin S.-R. Hsu M.-H. J. Org. Chem.  2001,  66:  2881 
  • 7b Kamal A. Reddy BSN. Reddy GSK. Synlett  1999,  1251 
  • 7c Jolivet-Fouchet S. Fabis F. Bovy P. Ochsenbein P. Rault S. Heterocycles  1999,  51:  1257 
  • 7d Nagasaka T. Koseki Y. J. Org. Chem.  1998,  63:  6797 
  • 7e Bhat B. Harrison DM. Tetrahedron  1993,  49:  10655 
  • 7f Kamal A. J. Org. Chem.  1991,  56:  2237 
  • 8a Ho T.-I. Chen W.-S. Hsu C.-W. Tsai Y.-M. Fang J.-M. Heterocycles  2002,  57:  1501 
  • 8b Kazmierski WM. McDermed JD. Synth. Commun.  2000,  30:  2629 
  • 8c Juaristi E. León-Romo JL. Ramírez-Quirós Y. J. Org. Chem.  1999,  64:  2914 
  • 8d Webb RR. Barker PL. Baier M. Reynolds ME. Robarge KD. Blackburn BK. Tischler MH. Weese KJ. Tetrahedron Lett.  1994,  35:  2113 
  • 9a Churcher I. Ashton K. Butcher JW. Clarke EE. Harrison T. Lewis HD. Owens AP. Teall MR. Williams S. Wrigley JDJ. Bioorg. Med. Chem. Lett.  2003,  13:  179 
  • 9b Cho NS. Song KY. Párkányi C. J. Heterocycl. Chem.  1989,  26:  1807 
  • 10a Mori M. Uozumi Y. Ban Y. J. Chem. Soc., Chem. Commun.  1986,  841 
  • 10b Mori M. Kimura M. Uozumi Y. Ban Y. Tetrahedron Lett.  1985,  26:  5947 
  • 11a Kraus GA. Liu P. Tetrahedron Lett.  1995,  36:  7595 
  • 11b Subhashini NJP. Hanumanthu P. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.  2000,  39:  198 
  • 12a Boojamra CG. Burow KM. Ellman JA. J. Org. Chem.  1995,  60:  5742 
  • 12b Boojamra CG. Burow KM. Thompson LA. Ellman JA. J. Org. Chem.  1997,  62:  1240 
  • 12c Cheng M.-F. Fang J.-M. J. Comb. Chem.  2004,  6:  99 
  • 12d Goff DA. Zuckermann RN. J. Org. Chem.  1995,  60:  5744 
  • 12e Mayer JP. Zhang J. Bjergarde K. Lenz DM. Gaudino JJ. Tetrahedron Lett.  1996,  37:  8081 
  • 12f Smith RA. Bobko MA. Lee W. Bioorg. Med. Chem. Lett.  1998,  8:  2369 
  • 12g Migihashi C. Sato F. J. Heterocycl. Chem.  2003,  40:  143 
  • 12h Kamal A. Reddy GSK. Raghavan S. Bioorg. Med. Chem. Lett.  2001,  11:  387 
  • 12i Kamal A. Reddy GSK. Reddy KL. Raghavan S. Tetrahedron Lett.  2002,  43:  2103 
  • 13a Hulme C. Peng J. Morton G. Salvino JM. Herpin T. Labaudiniere R. Tetrahedron Lett.  1998,  39:  7227 
  • 13b Kennedy AL. Fryer AM. Josey JA. Org. Lett.  2002,  4:  1167 
  • 13c Chen JJ. Golebiowski A. Klopfenstein SR. West L. Tetrahedron Lett.  2002,  43:  4083 
  • 13d Hulme C. Ma L. Kumar NV. Krolikowski PH. Allen AC. Labaudiniere R. Tetrahedron Lett.  2000,  41:  1509 
  • 13e Dener JM. inventors; Int. Patent, WO  2000056721.  ; Chem. Abstr. 2000, 133, 266873
  • 14 Kamal A. Reddy KL. Shankaraiah VDN. Synlett  2004,  1841 
  • 15 Dolle RE. MacLeod C. Martinez-Teipel B. Barker W. Seida PR. Herbertz T. Angew. Chem. Int. Ed.  2005,  44:  5830 
  • 16 A referee pointed out a report in which the solution-phase synthesis of 1,4-benzodiazapine-2,5-dione using a similar strategy was described. See: Gordon-Wylie SW. Teplin E. Morris JC. Trombley MI. McCarthy SM. Cleaver WM. Clark GR. Crystal Growth Design  2004,  4:  789 
  • 18 For a recent review on cyclative cleavage strategy, see: Pernerstorfer J. In Combinatorial Chemistry   Bannwarth W. Hinzen B. Wiley-VCH; Weinheim: 2006.  p.111-142  
  • 19 Kovacs J. Racemization and Coupling Rates of N-α-Protected Amino Acid and Peptide Active Esters: Predictive Potential, In The Peptides   Vol. 2:  Gross E. Meienhofer J. Academic; New York: 1980.  p.485-539  
  • 20 Mohiuddin G. Reddy PSN. Ahmed K. Ratnam CV. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.  1985,  24:  905 
17

Although several other conditions for the resin 5a and
N-Fmoc-protected phenylalanine (R2 = Bn, 3 equiv) were examined varying coupling agent [DCC, DIC, EDC, O-benzotriazole-N,N,N′,N′-tetramethyluronium hexafluoro-phosphate (HBTU), 2-(7-aza-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU), O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate (TBTU), BOP, PyBOP, 2-chloro-1,3-dimethylimidazolidium hexafluorophosphate (CIP), 1,1¢-carbonyldiimidazole (CDI), N,N′-disuccinimidyl carbonate (DSC), or diphenylphosphoryl azide (DPPA)], additive [none, N-hydroxybenzotriazole (HOBt), 1-hydroxy-7-aza-benzotriazole (HOAt), or N-hydroxysuccinimide (HOSu)], base [none, pyridine, Et3N, diisopropylethylamine (DIEA), or NMM], solvent [CH2Cl2, THF, DMF, or N,N-dimethyl-acetamide (DMA)] at r.t. or elevated temperatures, they did not bring any significant change on the resin 5a when judged on the basis of on-bead ATR-FTIR spectroscopy.

21

Representative Procedures for Preparation of Compounds 3Preparation of ( S )-2-{Benzyl[2-(Fmoc-amino)-3-phenylpropionyl]amino}benzoate Resin (6a; R 4 = H, R ¹ = Bn, R ² = Bn): To a mixture of the resin 5a 2a,b (R4 = H, R1 = Bn, 100 mg, theoretically 0.077 mmol) and Fmoc-phenylalanine (93 mg, 0.23 mmol) in CH2Cl2 (2 mL) at r.t. were added pyridine (37 mg, 0.46 mmol) and phosphorous oxychloride (37 mg, 0.23 mmol). The mixture was stirred at r.t. for 10 h and the resin was filtered, washed several times with CH2Cl2, DMF, MeOH, H2O, and MeOH, and dried in a vacuum oven to give 6a (124 mg). On-bead ATR-FTIR: 3418 (NH), 3028, 2921, 1722 (OC=O, NH-Fmoc, overlapped), 1664 (NC=O), 1601, 1512, 1492, 1451, 1241, 1076, 1028, 824, 757, 738, 697 cm-1.
Preparation of ( S )-1,3-Dibenzyl-1,4-benzodiazepine-2,5-dione (3a; R 4 = H, R ¹ = Bn, R ² = Bn): To the resin 6a (R4 = H, R1 = Bn, R2 = Bn, 124 mg, theoretically 0.074 mmol) was added 20% piperidine-DMF (2 mL) and the mixture was stirred at r.t. for 7.5 h. The mixture was filtered and washed with CH2Cl2. The filtrate was evaporated in vacuo and the residue was purified by a silica gel column chromatography (n-hexane-EtOAc, 1:1) to afford 3a (14 mg, 52%; 99% purity on the basis of LC-UV-MS spectrum). Chiral HPLC analysis of the derivative 3a was performed using CHIRALCEL OD-H (0.46 × 25 cm, DAICEL) column, 10% EtOH in hexane eluent at 0.6 mL/min flow rate, and UV detector at λ = 254 nm and showed a major peak at the t R = 22.40 min and a trace (<1%) at t R = 20.20 min. In the case of the corresponding racemic reference prepared from racemic phenylalanine by the same method, the HPLC spectrum showed two peaks at t R = 21.87 and 23.17 min under the same conditions. 1H NMR (500 MHz, CDCl3): d = 3.08 (dd, J = 7.9, 14.5 Hz, 1 H), 3.48 (dd, J = 6.7, 14.5 Hz, 1 H), 4.14 (m, 1 H), 5.10 (d, J = 15.7 Hz, 1 H), 5.14 (d, J = 15.7 Hz, 1 H), 6.74 (br d, J = 5.4 Hz, 1 H), 7.10 (d, J = 7.2 Hz, 2 H), 7.20-7.30 (m, 10 H), 7.44 (dt, J = 1.5, 8.4 Hz, 1 H), 7.80 (dd, J = 1.5, 7.8 Hz, 1 H). 13C NMR (125 MHz, CDCl3): d = 34.8, 52.2, 53.8, 122.3, 126.2, 126.8, 127.1, 127.5, 128.8, 129.4, 130.4, 132.6, 136.3, 136.6, 140.1, 168.4, 169.7 (shortage of two aromatic carbon peaks maybe due to peak overlapping). ESI-MS: m/z = 357 [M + H]+.
Preparation of Methyl 5-Benzamido-2-benzylamino-benzoate Resin (8): To a mixture of the resin 2 2b (460 mg, theoretically 0.53 mmol), prepared from AMEBA resin (1.6 mmol/g), and benzaldehyde (169 mg, 1.59 mmol) in DCE (5 mL) at r.t. was added NaBH(OAc)3 (338 mg, 1.59 mmol). The mixture was stirred at r.t. for 5 h and the resin was filtered, washed several times with CH2Cl2, DMF, MeOH, H2O and MeOH, and dried in a vacuum oven to give 8 (482 mg). On-bead ATR-FTIR: 3365 (NH), 3026, 2922, 1681 (OC=O), 1643 (NC=O), 1610, 1587, 1505, 1494, 1451, 1382, 1214, 1196, 1156, 1113, 1029, 819, 756, 697 cm-1.
Preparation of ( S )-Methyl 5-Benzamido-2-{benzyl[2-(Fmoc-amino)-3-phenylpropionyl]amino}benzoate Resin (R ² = Bn): To a mixture of the resin 8 (100 mg, theoretically 0.10 mmol) and Fmoc-phenylalanine (116 mg, 0.300 mmol) in CH2Cl2 (2 mL) at r.t. were added pyridine (47 mg, 0.60 mmol) and phosphorus oxychloride (46 mg, 0.30 mmol). The mixture was stirred at r.t. for 10 h and the resin was filtered, washed several times with CH2Cl2, DMF, MeOH, H2O and MeOH, and dried in a vacuum oven to give the amino acid coupled intermediate resin (R2 = Bn, 125 mg). On-bead ATR-FTIR: 3418 (NH), 3027, 2924, 1724 (OC=O, N-Fmoc, overlapped), 1650 (2 × NC=O, overlapped), 1611, 1504, 1493, 1450, 1264, 1197, 1159, 1030, 822, 757, 735, 698 cm-1.
Preparation of ( S )-7-Benzamido-1,3-dibenzyl-1,4-benzodiazepine-2,5-dione Resin (9; R ² = Bn): To the amino acid coupled intermediate resin (R2 = Bn, 139 mg, theoretically 0.11 mmol) at r.t. was added 20% piperidine-DMF (2 mL). The mixture was stirred at r.t. for 7.5 h and the resin was filtered, washed several times with CH2Cl2, DMF, and MeOH, and dried in a vacuum oven to give 9 (R2 = Bn, 112 mg). On-bead ATR-FTIR: 3418 (NH), 3027, 2923, 1662 (3 × NC=O, overlapped), 1610, 1493, 1450, 1263, 1195, 1158, 1115, 1031, 824, 734, 698 cm-1.
Preparation of ( S )-7-Benzamido-1,3-dibenzyl-1,4-benzodiazepine-2,5-dione (3p; R ¹ = R ² = Bn, R ³ = H, R 4 = 7-BzNH): To the resin 9 (R2 = Bn, 112 mg, theoretically 0.10 mmol) at r.t. was added 50% TFA-CH2Cl2 (2 mL). The mixture was stirred at r.t. for 12 h and the mixture was filtered and washed with CH2Cl2. The filtrate was evaporated in vacuo and the residue, dissolved in CH2Cl2, was passed through a SAX cartridge and washed with CH2Cl2. The filtrate was evaporated in vacuo and the residue was purified by a silica gel column chromatography (n-hexane-EtOAc, 1:1) to afford 3p (19 mg, 40%; 98% purity on the basis of LC-UV-MS spectrum). Chiral HPLC analysis of the derivative 3p was performed using the same protocol as that for the derivative 3a and showed a major peak at t R = 70.42 min and a trace (<1%) at t R = 53.44 min. In the case of the corresponding racemic reference prepared from racemic N-Fmoc-phenylalanine by the same method, the HPLC spectrum showed two peaks at t R = 52.28 and 71.32 min under the same conditions: 1H NMR (500 MHz, CDCl3): d = 3.00 (dd, J = 8.1, 14.4 Hz, 1 H), 3.43 (dd, J = 6.5, 14.4 Hz, 1 H), 4.14 (m, 1 H), 5.02 (d, J = 15.5 Hz, 1 H), 5.17 (d, J = 15.5 Hz, 1 H), 6.31 (br, 1 H), 7.08 (d, J = 6.5 Hz, 2 H), 7.16-7.28 (m, 9 H), 7.43 (t, J = 7.9 Hz, 2 H), 7.53 (t, J = 7.4 Hz, 1 H), 7.78 (d, J = 2.6 Hz, 1 H), 7.86 (d, J = 8.5 Hz, 2 H), 8.32 (dd, J = 2.6, 8.9 Hz, 1 H), 8.84 (br s, 1 H). 13C NMR (125 MHz, CDCl3): d = 34.9, 52.1, 53.8, 121.3, 123.5, 124.8, 127.0, 127.2, 127.3, 127.6, 128.7, 128.8, 128.9, 129.3, 132.2, 134.5, 135.7, 135.9, 136.5, 136.7, 166.1, 168.1, 169.4 (shortage of one aromatic carbon peak maybe due to peak overlapping). ESI-MS: m/z = 476 [M + H]+.