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Introduction
�

According to Crick and his “Central Dogma of Mo-
lecular Biology” [1] from 1970, DNA was sup-
posed to be the only source of genetic informa-
tion, running fluently from DNA to RNA and final-
ly to proteins. But by now, many phenomena are
known which cannot be explained by this “cen-
tral dogma”. It is remarkable that a single mam-
malian genome encoding about 30,000 genes is
able to express different gene patterns in about
200 different cell types at different stages of de-
velopment [2]. The function and morphology of
liver cells, for example, differs completely from
those of neural cells, although they have the
same set of genes, and most importantly, this
phenotype is maintained upon every division of
the cells. So it is obvious that there has to be an
additional layer of information encoded in or
around the genome exceeding the information
of the genetic sequence. This additional level of
information is achieved by epigenetic modifica-
tions which in their entirety are called the epige-
nome (from the Greek prefix epi-, which means
“on” or “over”). In 1999, Wolffe et al. defined the
term “epigenetics” as “heritable changes in gene
expression that occur without changes in DNA
sequence” [3]. These heritable changes are ach-

ieved by methylation of cytosine bases in the
DNA and by post-translational histone modifica-
tions, such as acetylation, methylation or phos-
phorylation. Epigenetic events occur throughout
all stages of tumorigenesis and are accepted as
important mechanisms in silencing tumor sup-
pressor genes. Therefore, they are a key driving
force in the development of cancer. We present
here the major epigenetic targets and mecha-
nisms of biological effects for inhibitors and their
relationship to human cancer. We present inhibi-
tors from natural sources and mainly focus on
those which are of interest for cancer chemopre-
vention. Compounds like vitamins that also act
rather remotely on epigenetic phenomena as
well [4] will not be included. In most cases only
links to cancer therapy are documented so far
and we discuss selected examples with regard to
that as well.

DNA Methylation
�

The methylation of cytosine bases in the mam-
malian genome by DNA methyltransferases oc-
curs at cytosines located 5′ to a guanosine as
part of a CpG dinucleotide and in total about
70– 80 % of the CpG sites are methylated [4], [5],
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The term epigenetics is defined as heritable
changes in gene expression patterns that occur
without changes in DNA sequence. Epigenetic
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by methylation of cytosine bases in the DNA and
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may be a possibility not only for cancer therapy
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moprevention.
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[6]. CpG dinucleotides are found in short DNA regions with a
length of 0.5 – 4 kb, which are known as CpG islands and which
are located in the proximal promoter regions of about half of the
genes in our genome. They represent about 1 –2 % of the genome
and contain more than half of the unmethylated CpG sites [4],
[5], [7], [8]. Other highly methylated sequences include satellite
DNAs, repetitive elements, non-repetitive intergenic DNA and
exons of genes [9]. In cancer cells the hypermethylation of cer-
tain promoter regions is known as one of the most important ep-
igenetic changes taking place in tumors, leading to transcrip-
tional silencing of tumor suppressor genes [10], [11], [12]. A large
variety of genes are aberrantly methylated in cancer cells includ-
ing genes that are involved in regulating DNA repair (e. g., BRCA1,
MLH1), signal transduction (e. g., RASSF1), cell cycle (e.g.,
p16INK4a, p15INK4b), carcinogen metabolism (e. g., GSTP1), cell ad-
herence (e. g., CDH1, CDH13), apoptosis (e. g., DAPK1, TMS1) or
angiogenesis (e. g., THBS1) [11], [12]. But of course, DNA methyl-
ation is also an essential function in normal mammalian cells. It
is involved in genomic imprinting (restriction of the expression
of a gene to only one of the two parental chromosomes) [13]
which is important for development. It is also necessary for X-
chromosomal gene inactivation [14], the mechanism of dosage
compensation in female mammals. The importance of DNA
methylation for normal genome function could be shown by
the finding that a homozygous mutation of the DNA methyl-
transferase gene results in embryonic lethality [15]. Thus, un-
wanted activation of certain genes by DNA methyltransferase in-
hibitors may pose a risk, e.g., by derepression of proinvasive
genes [16]. DNA methyltransferases (DNMTs) use S-adenosyl-L-
methione (SAM) as methyl group donating cofactor. So far, four
DNMTs are known in mammals, called DNMT1, DNMT2,
DNMT3A and DNMT3B [17], [18], [19].

Histone Modifications
�

The structure of chromatin plays an important role in gene ex-
pression. Chromatin is a macromolecular complex existing of
DNA, histone and non-histone proteins, and is responsible for
the controlled storage of the genetic information within the nu-
cleus [20]. The basic repeating units of chromatin are the nucle-
osomes that consist of 147 bp of DNA wrapped around a histone
octamer, which is composed of an H3/H4 tetramer and two H2A/
H2B dimers [21]. This alignment of nucleosomes is compacted
into a fiber of 30 nm, which is then further condensed to form
the chromosomes. This higher order folding is stabilized by the
linker histone H1 [22]. There are different levels of chromatin or-
ganization and subsequently transcriptional activity. Usually
condensed, inaccessible chromatin (“heterochromatin”) medi-
ates transcriptional repression, while transcriptionally active
genes are in regions of the more open and accessible “euchroma-
tin” [23]. Importantly, histones have amino-terminal tails pro-
truding out of the nucleosomes. These tails are open for post-
translational modifications, such as acetylation, methylation,
phosphorylation, sumoylation and ubiquitination. [24] To this
date at least eight different histone modifications, taking place
mainly at the N-terminal histone tails of histone H3 and histone
H4, have been documented [25]. These modifications result in
changes in the accessibility of the DNA to transcription factors
and in protein interactions determining the chromatin structure
[26]. So, chromatin is highly dynamic and can change its struc-
ture in response to cellular signals, which in turn affects gene ex-

pression [27]. Because of the diverse and complex nature of his-
tone modifications, which interact with each other, the term
“histone code” has been coined. The modifications of histone
proteins are also linked with DNA methylation, as DNA methyl-
transferases recruit histone deacetylases (HDACs), leading to
histone deacetylation and subsequently to transcriptional re-
pression.
Several in vitro studies have shown the cooperation of DNA
methylation and histone deacetylation in order to repress tran-
scription [28], [29]. Therefore, it is not surprising that the combi-
nation of DNMT and HDAC inhibition has been shown to induce
differentiation, apoptosis and cell growth arrest in several can-
cer cell lines [30]. This synergistic effect is seen in the increase
in expression of specific cancer-related genes. For example, the
re-expression of the hypermethylated genes MLH1, TIMP3,
CDKN2B and CDKN2A was greatly enhanced when histone de-
acetylase inhibitors were combined with low doses of an inhibi-
tor of DNA methyltransferases, whereas HDAC inhibition alone
was not able to reactivate transcription [31]. The expression of
the cyclooxygenase 2 gene, whose promoter is hypermethylated
in gastric cancer cells, can be restored with a combined treat-
ment of DNMT and HDAC inhibitors, while DNMT inhibition it-
self only induces partial re-expression [32]. More links between
the “histone code” and the “cytosine methylation code” are be-
coming evident [33].
Certain post-translational modifications on distinct amino acids
in the N-terminal tails of histones have been linked to either ac-
tive or repressed transcription. The acetylation of certain lysine
residues by histone acetyltransferases (HATs), for example, is as-
sociated with transcriptionally active regions, whereas tran-
scriptionally repressed chromatin usually is hypoacetylated
[34]. But there are also examples where histone hyperacetyla-
tion has been shown to lead to gene repression [35]. For other
modifications on the histone tails examples have been provided
for both activators and inhibitors of transcription. The methyla-
tion of lysine residues leads either to transcriptional activation
or repression, depending on the site of lysine methylation [36].
As there are different states of methylation (mono-, di- or trime-
thylation) possible for one lysine residue, the biological conse-
quences of methylation may differ [37]. Although the whole
process of selection of histone marks along our genome is not
fully understood, it is obvious that the enzymes, which catalyze
post-translational histone modifications, are actively involved in
carcinogenesis. It has been shown that global loss of monoacety-
lation and trimethylation of histone H4 is a common hallmark of
human tumor cells [38]. Another example is the correlation of
phosphorylated H3T11 with Gleason scores of prostate carcino-
mas [39].

Epigenetic Targets and their Inhibitors
�

DNA methyltransferases
In contrast to those tumor suppressor genes which are inactivat-
ed by genetic alterations, the genes that are silenced due to epi-
genetic modifications are still intact and can be reactivated by
intervention of small molecules acting as modifiers of epigenetic
mechanisms. For example, many genes that are hypermethylat-
ed in cancer can be reactivated with inhibitors of DNA methyl-
transferases [40]. Several DNA methyltransferase inhibitors have
been developed so far. Analogues of cytidine, such as 5-azacyti-
dine or 5-aza-2′-deoxycytidine have long been known for their
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ability of inhibiting DNA methyltransferases [40], [41]. Several
studies have shown the ability of DNA methyltransferase inhibi-
tors to prevent cancer using different pathways [42], [43], [44],
[45]. There are also some natural products that were identified as
inhibitors of DNA methyltransferases, thus having potential in
preventing cancer, too. For example, some disulfide bromotyro-
sine derivatives, such as psammaplin A, isolated from the sponge
Pseudoceratina purpurea, were found to be potent inhibitors of
DNMT1 but also histone deacetylases [46]. (–)-Epigallocatechin
3-gallate (EGCG), a main polyphenol from green tea, inhibits
DNA methyltransferases and can thereby reactivate silenced
genes like P16INK4a and hMLH1 in tumor cells [47]. EGCG is a plei-
otropic drug that has received a lot of attention for cancer chemo-
prevention but it remains to be determined which of its biological
activities are the most important for its preventive abilities [48].
Two other polyphenols from coffee, caffeic acid and chlorogenic
acid, have also been reported to be inhibitors of DNMT1 in the
low micromolar range [49] and also apple polyphenols have sim-
ilar activity [50]. The major isoflavone from soy bean, genistein,
has been reported to prevent cancer in animal models [51]. The ef-
fects of genistein have been studied in different cancer cell lines,
where it was able to inhibit cancer cell growth [52], to induce
apoptosis and cell cycle arrest and to inhibit angiogenesis [53],
[54], but the exact mechanisms behind these effects are not fully
understood so far. Several mechanisms, such as estrogenic and
antiestrogenic effects, are discussed to explain this activity, but
one possible mechanism of particular interest is the regulation of
transcriptional activity by modulating DNA methylation. Genis-
tein inhibits methylation of DNA and thus can lead to re-expres-
sion of methylation-silenced genes, such as RARβ, p16INK4 and
MGMT in the esophageal squamous cell carcinoma cell line KYSE
510 [55]. As the histone acetylation status is also known to have
an impact on the re-expression of these genes, the weak inhibition
of histone deacetylase activity observed after treatment of the
cells with genistein is possibly contributing to the gene reactiva-
tion, too. Biochanin A and daidzein, two other isoflavones, are
weaker inhibitors of DNMTs and as they also are less effective in
reactivating the RARβ gene, a direct correlation between the inhib-
ition of DNA methyltransferases and the reactivation of the si-
lenced genes can be assumed [55].

Reversible histone acetylation
The steady state of reversible protein acetylation is maintained
by a dynamic equilibrium between histone acetyltransferases
(HATs) and histone deacetylases (HDACs). The effect of these
chromatin modifying enzymes on gene expression has been
studied widely. In 1964, Allfrey was the first to suggest that ace-
tylation of histones was involved in regulation of transcription
[56]. HAT enzymes can be classified into several groups, includ-
ing the GNAT family (e. g., GCN5, PCAF), the MYST group (e.g.,
Tip60), the p300/CBP family, the SRC group and the TAFII250
family [57]. The histone deacetylases can be divided into four
classes [58]. The HDACs of class I, which have homology to the
yeast HDAC Rpd3 [59], are located in the nucleus, where they in-
teract with transcriptional repressors and cofactors. This class I
includes HDAC1, HDAC2, HDAC3 and HDAC8 [60]. HDAC11 was
first classified as a class I enyzme but lately is attributed a class
of its own (class IV HDAC [61]). The HDACs of class II are able to
shuttle between the cytoplasm and the nucleus and show ho-
mology to the yeast deacetylase HdaI [62]. Class II histone deace-
tylases include HDAC4, HDAC5, HDAC6, HDAC7, HDAC9 and
HDAC10. Interestingly, one of these deacetylases, HDAC6 has

two catalytic domains, one for histone deacetylation, one for de-
acetylation of tubulin [63], showing that HDACs, as well as HATs,
also target non-histone protein substrates. The histone deacety-
lases of classes I, II and IV have a zinc ion at the base of their cat-
alytic pocket and a hydrophobic pocket that allows the acetylat-
ed lysine residue to insert.
The third class of histone deacetylases is called Sirtuins after
their homology to the yeast silent information regulator 2 (Sir2)
[64], [65], [66]. They differ completely from the zinc-dependent
HDACs of classes I, II and IV in their mode of action in removing
the acetyl group from lysine residues, as they are dependent on
nicotinamine adenine dinucleotide (NAD+). For class III HDACs
also a large number of non-histone substrates, such as p53 or tu-
bulin have been reported [65], [66], [67].

Modulators of histone deacetylases
The first inhibitors of histone deacetylases classes I and II were
isolated from natural sources and based upon those, a variety of
synthetic inhibitors have been developed. The general structure
contains a binding region responsible for enzyme specifity,
which is separated by a spacer from a group that effects inactiva-
tion of the enzyme [68], [69]. This inactivating group needs to be
able to bind the zinc ion in the active site, often referred to as the
zinc binding group (ZBG). The HDAC inhibitors are classified into
different groups depending on their structure, including (a)
small-chain fatty acids, (b) hydroxamic acids, (c) cyclic tetrapep-
tides, (d) benzamides and others that do not fit in these classifi-
cations [70], [71].
The largest of these groups of HDAC inhibitors is that which car-
ries a hydroxamic acid as the zinc binding group with the natural
product trichostatin A (TSA) as lead structure (see ●� Fig. 1 for
selected inhibitor structures). TSA, isolated from Streptomyces
hygroscopicus, inhibits HDACs of group I and group II in the
nanomolar range and induces differentiation, cell cycle arrest
and apoptosis [72]. It has been reported that HDAC inhibition
can affect changes in gene expression of genes that have an im-
pact on apoptosis and the cell cycle, such as p21Cip1/Waf1, cyclins
(A, E, B1, D1 and D3), apoptosis mediators (e.g., CD95, Bax, Bcl-
2), transcription factors (e. g., GATA-2, c-Myc) and retinoic acid
receptors (RAR) [73], [74].
Acute promyeolocytic leukemia (APL) is one disease of particular
interest concerning RAR as targets of retinoids, as APL patients
respond with disease remission, when treated with pharmaco-
logical doses of retinoic acid. In APL, the RAR/PML oncogenic
transcription factor binds to the retinoic acid response element
(RARE), recruiting the CoR/SIN3/HDAC complex and repressing
transcription. Agonists, such as retinoic acid, displace CoR/SIN3/
HDAC by interacting with the RAR and thereby activate gene ex-
pression in association with HATs [71]. Therefore, it is apparent
that the therapeutic efficacy in cases of APL can be improved,
when synthetic or naturally occurring retinoids are combined
with inhibitors of histone deacetylases [75].
Inhibitors of HDACs are able to disrupt the cell cycle in the G2

phase, so that the cells enter the M phase prematurely and fur-
thermore they have been reported to interfere directly with the
mitotic spindle checkpoint [76]. Cell cycle arrest and/or apopto-
sis are induced by the activation of repressed genes, such as P21
and BAX. Strikingly, tumor cells seem to be more sensitive to the
actions of HDAC inhibitors than normal cells. The mechanisms
behind this “cancer selectivity” are not fully understood, but it
has been reported that thioredoxin, the intracellular thiol status
and the accumulation of reactive oxygen species as well as the
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induction of TRAIL, DR4 and DR5 could be responsible for it [77],
[78]. Some HDAC inhibitors have been reported to be able to lead
to an increasing level of CD95/CD95 L [79] and FAS/FASL [80],
consequently leading to receptor-mediated apoptosis. HDACs in-
teract directly with the tumor suppressor protein p53 by remov-
ing acetyl groups from its C-terminal tail, resulting in decreased
transactivation and on the other hand, HDAC inhibitors can lead
to an increase in acetylation levels of the p53 gene and therefore
to an increase of transcriptional activity [71].
So far, there are several studies that have tried to point out the
chemopreventive potential of HDAC inhibitors [81], [82], [83].
For example, suberoylanilide hydroxamic acid (SAHA), a syn-
thetic inhibitor of zinc-dependent HDACs, decreases the inci-
dence of N-methyl-N-nitrosourea-induced rat mammary tumors
and the multiplicity of carcinogen-induced lung tumors in mice
[83]. SAHA (INN: Vorinostat, ZolinzaTM) has been approved for
the treatment of cutaneous T-cell lypmphoma by the FDA [84].
Although inhibitors of histone deacetylases have a direct impact
on tumor cells, it is discussed that interaction with the cancer
cell environment also plays a role in chemoprevention. In case
of metastasis, for example, the primary tumor needs vasculari-

zation to supply nutrients and oxygen, before it is able to finally
metastasize. Hypoxia, one of the factors inducing angiogenesis,
is known to increase expression levels and activity of HDAC1
[85] and therefore it has been hypothesized and already been
demonstrated that inhibition of HDAC1 can lead to inhibition of
angiogenesis in vitro and in vivo [86]. Another pathway leading
to cancer prevention is the up-regulation of stimulary factors of
the immune system. HDAC inhibition induces expression of
CD40, CD80 and CD86, as well as major histocompatibility
(MHC) proteins of class I and class II and interferons [71], thus
making it more difficult for tumor cells to survive.
Remarkably, HDAC inhibitors have a large variety of targets in
different stages of tumorigenesis and therefore are promising
candidates both in therapy and in prevention of cancer. There-
fore, it is not surprising that there are several HDAC inhibitors
in clinical trials, tested against different kinds of tumors [87].
Among them is the natural product FK-228 (also known as FR-
90122 or depsipeptide) which is in clinical trials for the treat-
ment of cancer (INN: romidepsin) [88]. Some natural products
that have been reported to have potential in cancer prevention
acting as inhibitors of histone deacetylases shall be discussed in
the following.
Butyrate, a short-chain fatty acid, which inhibits HDAC activity
at high micromolar concentrations, is formed in the digestive
tract by fermentation of dietary fiber. Butyrate affects different
signalling pathways [89], [90], suggesting multiple mechanisms
of action, of which not all involve alteration in histone acetyla-
tion. But it is apparent that butyrate modulates transcriptional
regulation in a similar manner as other HDAC inhibitors do,
with similar consequences concerning cellular differentiation,
cell cycle arrest, apoptosis, invasion and metastasis. Like other
HDAC inhibitors, butyrate is able to induce apoptosis by a mech-
anism involving the activation of caspases and decreased levels
of Bcl-2 [91]. Apoptosis mediated by activation of death recep-
tors has also been proposed for butyrate, with increasing death
receptor 5 (DR5) expression, a receptor for TRAIL, consequently
leading to activation of caspase 8 and caspase 10 [92]. Addition-
ally, butyrate inhibits tumor invasion and metastasis, as it indu-
ces expression of proteins that are known to inhibit invasion in a
cell culture model [93] and reduced liver metastasis of rat colon
cancer cells in vivo and resistance to oxidative stress in vitro [94].
Although therapeutic intervention with butyrate is not promis-
ing, an ongoing exposure stemming from the microbial degrada-
tion of dietary fiber in the colon could have chemopreventive ef-
fects, at least in part by histone deacetylase inhibition [95]. Ester
prodrugs of butyrates might have potential for an improvement
of fatty acid based HDAC inhibitors [96].
Diallyl disulfide (DADS) is an organosulfur compound, which is
found in garlic and other Allium species. Upon administration of
DADS, differentiation, cell cycle arrest and apoptosis has been
demonstrated in several cell lines [97], for example, by inducing
a G2/M arrest in different cancer cell types, such as colon and
neuroblastoma cells and by increasing the expression levels of
BAX in human lung and breast cancer cells [98], [99]. S-Allylmer-
captocysteine, a metabolite of DADS, has also been shown to
have an effect on the levels of histone acetylation. It induced
growth arrest in human colon and breast cancer cells [100] and
also a G2/M arrest, as well as apoptosis in human colon cells has
been described [101]. Inhibition of histone deacetylases seems
to be a general mechanism for cancer prevention by organosul-
fur agents from garlic or other Allium vegetables. Sulforaphane
(SFN), an isothiocyanate present in cruciferous vegetables, such

Fig. 1 Structures of important epigenetic modifiers.
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as broccoli, has been made responsible for several chemopre-
ventive mechanisms [102]. For example, SFN increases histone
H4 acetylation in P21 promoter regions, subsequently leading
to an increasing expression of p21 in HCT116 cells. In addition,
the higher acetylation levels achieved by SFN led to G2/M arrest
[103] and apoptosis. Remarkably, the metabolite SFN-cysteine
and not the parent compound itself, is the active, HDAC-inhibit-
ing principle. [104]. Interestingly, it was demonstrated that a
combination of sulforaphane and the DMNT-inhibiting isofla-
vone genistein enhances the reactivation of the DNA methyla-
tion-silenced genes p16INK4a and MGMT [55], implicating syn-
ergistic effects. Recently, ACS 2, a sulfurated derivative of valpro-
ic acid (VPA), has been demonstrated to show HDAC inhibition
[105]. It displayed much stronger inhibition of deacetylase activ-
ity than VPA, which is also known as an HDAC inhibitor. Also its
sulfur containing moiety, 5-(4-hydroxyphenyl)-3H-1,2-dithiole-
3-thione, a metabolite of anethole trithione is contributing to
this inhibition of HDACs. Anethole trithione has shown potential
in clinical trials for lung cancer prevention [106]. Inhibition of
sirtuins has been shown for hyperforin and derivatives [107]
but it is unclear whether the antiproliferative activity of these
compounds can be tied to sirtuin inhibition. Resveratrol, a poly-
phenol from grapes, has received a lot of attention in cancer che-
moprevention [108]. It has been postulated to be an activator of
sirtuins [109] but there is discussion about whether these effects
are artefacts from the assay procedure [110]. Sirtuin activators
have demonstrated anti-inflammatory effects, e.g., decreased
release of TNF-α, that make them interesting for the prevention
of damages by metabolic diseases [111], [112] which could also
play a role for cancer chemoprevention. But again, it will be dif-
ficult to dissect the decisive effects for such an activity in a plei-
otropic drug like resveratrol.

Inhibition of histone acetyltransferases
Although direct cancer prevention of specific modulators of his-
tone acetyltransferases has not been demonstrated so far, they
have shown their capability in cancer therapy, as they are in-
volved in transcriptional regulation. Several studies support the
assumption that HATs, such as p300/CBP, act as transcriptional
integrators for physiological cues to coordinate regulation of
cell cycle, differentiation, DNA repair and apoptosis [113], [114].
Taking the inhibitors of HDACs as an example, it is possible that
HAT inhibitors have potential in cancer prevention as well.
Different types of inhibitors of histone acetyltransferases have
been reported and also several natural products have shown
their ability to inhibit HATs. For example, anacardic acid, found
in the apple of the cashew (Anacardium occidentale), shows anti-
tumor activity due to an inhibition of p300 and PCAF in the low
micromolar range [115], [116], with the problem, however, that
cells are poorly permeable for this compound. Garcinol, a poly-
isoprenylated benzophenone derivative from Garcinia indica
fruit rind, has been described as a cell-permeable HAT inhibitor,
showing inhibition towards p300 and PCAF [117]. Another natu-
ral compound, which has been shown to specifically inhibit
p300/CPB, is curcumin, a major curcuminoid in turmeric [118].
But again, curcumin is a pleiotropic agent with numerous possi-
ble mechanisms that could contribute to a chemopreventive ef-
fect [48].
Ursodeoxycholic acid (UDCA, ursodiol), a tertiary bile acid used
in treatment of biliary cirrhosis and ulcerative colitis has been
demonstrated to have potential in colon cancer prevention in
preclinical and in animal models [119], [120], but the mecha-

nisms behind it were unknown. Recently, it has been shown
that UDCA induces differentiation and senescence by modulat-
ing histone acetylation [121]. But in contrast to HDAC inhibitors,
UDCA induces hypoacetylation of histones like HAT inhibitors
would do, although histone acetylase activity is not affected
directly by UDCA in vitro. Further investigation revealed that
HDAC6 is up-regulated in cells treated with ursodeoxycholic
acid [121]. Not only because of this finding has it already been
suggested that modulation of HAT or HDAC activity in any direc-
tion might induce differentiation and senescence [121]. At pres-
ent, a randomized phase II clinical trial is ongoing, comparing
UDCA to acetylsalicylic acid or sulindac for its activity in pre-
venting colorectal cancer [122].

Modulation of histone methylation
Histone methylation is another widely described modification,
taking place at lysine and arginine residues. Histone methylation
marks play a role in regulation of transcriptional activity as well.
Methylation of histones, for example, has been shown to be im-
portant for the establishment of a checkpoint control following
DNA damage [123]. The methylation of arginine residues con-
tributes to both transcriptionally active and repressed genes
and is catalyzed by protein arginine methyltransferases (PRMTs)
[124], [125], [126]. Arginine methylation generally is correlated
with transcriptional activation and can occur in three different
states, monomethylated, symmetrically dimethylated or asym-
metrically dimethylated. PADI4, a peptidyldeiminase is able to
remove methyl groups from methylated arginines, leading to cit-
rulline [127]. But because of the fact that unmethylated argi-
nines are deiminated to citrullines as well, the role of PADI4 in
antagonizing histone arginine methylation needs further clarifi-
cation. Nevertheless, it is clear that demethylimination of argi-
nines contributes to regulation of transcription. Importantly,
PADI4 is not able to demethylate dimethylated arginines. Re-
cently, a new enzyme with arginine demethylase activity has
been discovered [128]. This Jumanji domain-containing protein
6 (JMJD6) is an iron- and α-ketoglutarate-dependent dioxyge-
nase that demethylates histone H3 at arginine 2 (H3R2) and his-
tone 4 at arginine 3 (H4R3). In contrast to the deiminase PADI4,
JMJD6 is able to remove methyl groups from dimethylated argi-
nines [128].
The methylation of lysine residues can lead either to activation
or repression of gene expression, depending on the particular
histone lysine residue [36]. Methylation of H3K4, H3K36 and
H3K79 are associated with transcriptional activation [129],
whereas methylation of H3K9, H3K27 and H4K20 are linked to
repressed genes [130]. As mentioned above, also the methylation
state (mono-, di- or trimethylation) is variable, having different
effects on transcription [37]. Histone lysine methylation is car-
ried out by a family of proteins containing a SET (suppressor of
variegation, enhancer of zeste and trithorax) domain and by the
non-SET-domain proteins DOT1/DOT1 L [131], [132]. All lysine
methyltransferases use S-adenosyl-L-methionine (SAM) as the
cofactor. Until recently, it was assumed that histone lysine meth-
ylation was an irreversible modification, although a group led by
Paik had described a demethylating activity in rat kidney already
in 1964 [133]. But this activity was never linked to a particular
enzyme. In 2004, the assumption of “permanent methylation”
really was shaken, when the lysine specific demethylase 1
(LSD1), known as a component of several histone deacetylase
complexes, was identified as an amine oxidase which selectively
removes methyl groups from H3K4 (mono- or dimethylated)

Review 1597

Hauser A-T, Jung M. Targeting Epigenetic Mechanisms … Planta Med 2008; 74: 1593 – 1601

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



[134]. Interestingly, LSD1 can change its selectivity to H3K9
(mono- or dimethylated) when it interacts with the androgen re-
ceptor [135]. Caused by its monoamine oxidase (MAO) type
mechanism of the demethylation reaction, LSD1 is not able to
demethylate trimethylated lysine residues. Hence it was as-
sumed that there have to be demethylases that operate by a dif-
ferent mechanism. An oxidation reaction similar to that of AlkB
from E. coli, a demethylating DNA repair enzyme was predicted
[136]. AlkB is a α-ketoglutarate- and iron-dependent dioxyge-
nase which hydroxylates methyl groups from damaged DNA
leading to the release of formaldehyde. In search for histone ly-
sine demethylating enzymes with a similar mechanism, the
group of the already mentioned Jumanji domain-containing
(JmjC) enzymes was identified [137]. In fact, the members of
this family are able to demethylate trimethylated lysine residues
in an oxidation reaction also dependent on Fe(II) and α-ketoglu-
tarate.
So far, only few small molecule modulators of the histone lysine
demethylating enzymes have been described. But evidence sug-
gests that LSD1 is a promising target both in cancer prevention
and in therapy. It is up-regulated in mammary epithelial cells
that have been exposed to dietary and environmental carcino-
gens, resulting in the assumption that induction of LSD1 repre-
sents an early response to carcinogen exposure [138]. It has also
been reported that inhibition of LSD1 in colon carcinoma cells
results in re-expression of aberrantly silenced genes, which are
important in the development of colon cancer [139]. The coloc-
alization of LSD1 and the androgen receptor in androgen-de-
pendent tissue led to investigations showing that LSD1 stimu-
lates androgen-receptor-dependent transcription [135]. JMJD2C,
a member of the Jumanji domain-containing enzymes has been
reported to regulate the androgen receptor as well [140]. It was
found that JMJD2C colocalizes with LSD1 and the androgen re-
ceptor and that both demethylases cooperatively stimulate an-
drogen receptor-dependent gene expression [140]. Thus, modu-
lation of the activity of LSD1 and JMJD2C represents novel strat-
egies to regulate androgen receptor functions and accordingly
control specific gene expression. Therefore, the inhibition of
LSD1 and the JmjC proteins will be interesting options in cancer
prevention and therapy.

Perspectives
�

Epigenetics is an emerging field in cancer research, as the impact
of DNA methylation and histone modifications on transcription-
al activity is becoming more and more clear. Thus, the search for
agents that target these mechanisms in order to elucidate the
role of DNA methyltransferases and histone modifying enzymes
in cancer development is being pursued with increasing efforts.
Natural products can be important tools to further characterize
the chromatin-modifying enzymes. In many cases they are the
first agents identified as inhibitors or modulators of the particu-
lar enzyme and thereby serve as lead structures for new drug-
like compounds or may be drug candidates themselves.
In this review we have presented natural products that target
epigenetic mechanisms, more precisely inhibitors of DNA meth-
ylation and modulators of histone acetylation and histone meth-
ylation. But as mentioned above, there are other modifications to
histones, such as ubiquitinylation [141], sumoylation [142] and
poly-ADP-ribosylation [143] which have already been associated
with altered transcription as well. Natural and chemical prod-

ucts acting as novel small molecule inhibitors of the enzymes in-
volved in these modifications will help us to further improve our
understanding of the epigenetic mechanisms on the whole and
may result in new candidates for cancer prevention and therapy.
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