Thromb Haemost 2005; 94(01): 26-36
DOI: 10.1160/TH04-12-0818
Review Article
Schattauer GmbH

Ultrasound thrombolysis

Stefan Pfaffenberger
1   Department of Internal Medicine II, University of Vienna, Austria
,
Branka Devcic-Kuhar
2   Institute of General Physics, Vienna University of Technology, Austria
,
Stefan P. Kastl
1   Department of Internal Medicine II, University of Vienna, Austria
,
Kurt Huber
3   3rd Department of Medicine (Cardiology and Emergency Medicine), Wilhelminenspital, Vienna, Austria
,
Gerald Maurer
1   Department of Internal Medicine II, University of Vienna, Austria
,
Johann Wojta
1   Department of Internal Medicine II, University of Vienna, Austria
,
Michael Gottsauner-Wolf
1   Department of Internal Medicine II, University of Vienna, Austria
› Author Affiliations
Further Information

Publication History

Received 18 December 2004

Accepted after resubmission 09 April 2005

Publication Date:
05 December 2017 (online)

Summary

Cardiovascular diseases are a major cause of mortality in the developed world. Efficacy of thrombolysis plays an important role in the management of acute myocardial infarction and cerebral insult both in the acute event and in the long-term outcome of these patients. New adjunctive strategies have been tested, therefore, to make thrombolytic therapies more effective and safer. Ultrasound Thrombolysis is a technique which showed promising results under in vitro conditions and in animal studies. Now clinical trials have to prove if it is also feasible for clinical application. This report gives an overview on different technical approaches and their current performances in the clinical setting. All original articles are chronologically ordered in tables providing detailed information on each study concerning experimental design, acoustical parameters and thrombolysis outcome.

 
  • References

  • 1 Trubestein G, Engel C, Etzel F. et al. Thrombolysis by ultrasound. Clin Sci Mol Med Suppl 1976; 3: 697s-698s.
  • 2 Siegel RJ, Cumberland DC, Myler RK. et al. Percutaneous ultrasonic angioplasty: initial clinical experience. Lancet 1989; 2: 772-4.
  • 3 Pfaffenberger S, Devcic-Kuhar B, El-Rabadi K. et al. 2MHz ultrasound enhances t-PA-mediated thrombolysis: comparison of continuous versus pulsed ultrasound and standing versus travelling acoustic waves. Thromb Haemost 2003; 89: 583-9.
  • 4 Blinc A, Francis CW, Trudnowski JL. et al. Characterization of ultrasound-potentiated fibrinolysis in vitro. Blood 1993; 81: 2636-43.
  • 5 Rosenschein U, Frimerman A, Laniado S. et al. Study of the mechanism of ultrasound angioplasty from human thrombi and bovine aorta. Am J Cardiol 1994; 74: 1236-66.
  • 6 Siddiqi F, Blinc A, Braaten J. et al. Ultrasound increases flow through fibrin gels. Thromb Haemost 1995; 73: 495-8.
  • 7 Braaten J, Goss RA, Francis CW. Ultrasound reversibly dissagregates fibrin fibers. Thromb Haemost 1997; 78: 1063-8.
  • 8 Francis CW, Blinc A, Lee S. et al. Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots. Ultrasound Med Biol 1995; 21: 419-24.
  • 9 Devcic-Kuhar B, Pfaffenberger S, Gherardini L. et al. Ultrasound affects distribution of plasminogen and tissue-type plasminogen activator in whole blood clots in vitro . Thromb Haemost 2004; 92: 980-5.
  • 10 Everbach EC, Francis CW. Cavitational mechanisms in ultrasound-accelerated thrombolysis at 1 MHz. Ultrasound Med Biol 2000; 26: 1153-60.
  • 11 An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. The GUSTO investigators. N Engl J Med 1993; 329: 673-82.
  • 12 Olsson SB, Johansson B, Nilsson AM. et al. Enhancement of thrombolysis by ultrasound. Ultrasound Med Biol 1994; 20: 375-82.
  • 13 Nilsson AM, Odselius R, Roijer A. et al. Pro- and antifibrinolytic effects of ultrasound on streptokinaseinduced thrombolysis. Ultrasound Med Biol 1995; 21: 833-40.
  • 14 Luo H, Nishioka T, Berglund H. et al. Effect of external ultrasound frequency on thrombus disruption In vitro. J Thromb Thrombolysis 1996; 3: 63-6.
  • 15 Kimura M, Iijima S, Kobayashi K. et al. Evaluation of the thrombolytic effect of tissue-type plasminogen activator with ultrasonic irradiation: in vitro experiment involving assay of the fibrin degradation products from the clot. Biol Pharm Bull 1994; 17: 126-30.
  • 16 Suchkova V, Carstensen EL, Francis CW. Ultrasound enhancement of fibrinolysis at frequencies of 27 to 100 kHz. Ultrasound Med Biol 2002; 28: 377-82.
  • 17 Francis CW, Onundarson PT, Carstensen EL. et al. Enhancement of fibrinolysis in vitro by ultrasound. J Clin Invest 1992; 90: 2063-8.
  • 18 Luo H, Steffen W, Cercek B. et al. Enhancement of thrombolysis by external ultrasound. Am Heart J 1993; 125: 1564-9.
  • 19 Suchkova V, Siddiqi FN, Carstensen EL. et al. Enhancement of fibrinolysis with 40-kHz ultrasound. Circulation 1998; 98: 1030-5.
  • 20 Lauer CG, Burge R, Tang DB. et al. Effect of ultrasound on tissue-type plasminogen activator-induced thrombolysis. Circulation 1992; 86: 1257-64.
  • 21 Rosenschein U, Furman V, Kerner E. et al. Ultrasound imaging-guided noninvasive ultrasound thrombolysis: preclinical results. Circulation 2000; 102: 238-45.
  • 22 Devcic-Kuhar B, Pfaffenberger S, Groschl M. et al. In vitro thrombolysis enhanced by standing and travelling ultrasound wave fields. Ultrasound Med Biol 2002; 28: 1181-7.
  • 23 Sakharov DV, Barrertt-Bergshoeff M, Hekkenberg RT. et al. Fibrin-specificity of a plasminogen activator affects the efficiency of fibrinolysis and responsiveness to ultrasound: comparison of nine plasminogen activators in vitro. Thromb Haemost 1999; 81: 605-12.
  • 24 Basta G, Lupi C, Lazzerini G. et al. Therapeutic effect of diagnostic ultrasound on enzymatic thrombolysis. An in vitro study on blood of normal subjects and patients with coronary artery disease. Thromb Haemost 2004; 91: 1078-83.
  • 25 Nedelmann M, Eicke BM, Lierke EG. et al. Low-frequency ultrasound induces nonenzymatic thrombolysis in vitro. J Ultrasound Med 2002; 21: 649-56.
  • 26 Shlamovitz GZ, Iakobishvili Z, Matz I. et al. In vitro ultrasound augmented clot dissolution–what is the optimal timing of ultrasound application?. Cardiovasc Drugs Ther 2002; 16: 521-6.
  • 27 Harpaz D, Chen X, Francis CW. et al. Ultrasound enhancement of thrombolysis and reperfusion in vitro . J Am Coll Cardiol 1993; 21: 1507-11.
  • 28 Shegal CM, Leveen RF, Shlansky Goldberg RD. Ultrasound-assisted thrombolysis. Invest Radiol 1993; 28: 939-43.
  • 29 Harpaz D, Chen X, Francis CW. et al. Ultrasound accelerates urokinase-induced thrombolysis and reperfusion. Am Heart J 1994; 127: 1211-9.
  • 30 Atar S, Neuman Y, Miyamoto T. et al. Synergism of aspirin and heparin with a low-frequency non-invasive ultrasound system for augmentation of in-vitro clot lysis. J Thromb Thrombolysis 2003; 15: 165-9.
  • 31 Higazi AA, Katz I, Mayer M. et al. The effect of ultrasonic irradiation and temperature on fibrinolytic activity in vitro . Thromb Res 1993; 69: 251-3.
  • 32 Braaten JV, Goss RA, Francis CW. Ultrasound reversibly disaggregates fibrin fibers. Thromb Haemost 1997; 78: 1063-8.
  • 33 Francis CW, Blinc A, Lee S. et al. Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots. Ultrasound Med Biol 1995; 21: 419-24.
  • 34 Blinc A, Kennedy SD, Bryant RG. et al. Flow through clots determines the rate and pattern of fibrinolysis. Thromb Haemost 1994; 71: 230-5.
  • 35 Kornowski R, Mendelevich L, Zaretsky U. et al. Hemodynamic changes determine the efficacy of thrombolysis: results from an in-vitro flow model. Coron Artery Dis 1998; 9: 43-8.
  • 36 Siddiqi F, Odrljin TM, Fay PJ. et al. Binding of tissue- plasminogen activator to fibrin: effect of ultrasound. Blood 1998; 91: 2019-25.
  • 37 Luo H, Nishioka T, Fishbein MC. et al. Transcutaneous ultrasound augments lysis of arterial thrombi in vivo. Circulation 1996; 94: 775-8.
  • 38 Kornowski R, Meltzer RS, Chernine A. et al. Does external ultrasound accelerate thrombolysis? Results from a rabbit model. Circulation 1994; 89: 339-44.
  • 39 Riggs PN, Francis CW, Bartos SR. et al. Ultrasound enhancement of rabbit femoral artery thrombolysis. Cardiovasc Surg 1997; 5: 201-7.
  • 40 Luo H, Birnbaum Y, Fishbein MC. et al. Enhancement of thrombolysis in vivo without skin and soft tissue damage by transcutaneous ultrasound. Thromb Res 1998; 89: 171-7.
  • 41 Suchkova VN, Baggs RB, Francis CW. Effect of 40-kHz ultrasound on acute thrombotic ischemia in a rabbit femoral artery thrombosis model: enhancement of thrombolysis and improvement in capillary muscle perfusion. Circulation 2000; 101: 2296-301.
  • 42 Siegel RJ, Atar S, Fishbein MC. et al. Noninvasive transcutaneous low frequency ultrasound enhances thrombolysis in peripheral and coronary arteries. Echocardiography 2001; 18: 247-57.
  • 43 Larsson J, Carlson J, Olsson SB. Ultrasound enhanced thrombolysis in experimental retinal vein occlusion in the rabbit. Br J Ophthalmol 1998; 82: 1438-40.
  • 44 Kashyap A, Blinc A, Marder VJ. et al. Acceleration of fibrinolysis by ultrasound in a rabbit ear model of small vessel injury. Thromb Res 1994; 76: 475-85.
  • 45 Neuman Y, Rukshin V, Tsang V. et al. Augmentation of in-stent clot dissolution by low frequency ultrasound combined with aspirin and heparin. An ex-vivo canine shunt study. Thromb Res 2003; 112: 99-104.
  • 46 Siegel RJ, Atar S, Fishbein MC. et al. Noninvasive, transthoracic, low-frequency ultrasound augments thrombolysis in a canine model of acute myocardial infarction. Circulation 2000; 101: 2026-9.
  • 47 Jeon DS, Luo H, Fishbein MC. et al. Noninvasive transcutaneous ultrasound augments thrombolysis in the left circumflex coronary artery--an in vivo canine study. Thromb Res 2003; 110: 149-58.
  • 48 Siegel RJ, Suchkova VN, Miyamoto T. et al. Ultrasound energy improves myocardial perfusion in the presence of coronary occlusion. J Am Coll Cardiol 2004; 44: 1454-8.
  • 49 Luo H, Fishbein MC, Bar-Cohen Y. et al. Cooling system permits effective transcutaneous ultrasound clot lysis in vivo without skin damage. J Thromb Thrombolysis 1998; 6: 125-31.
  • 50 Cohen MG, Tuero E, Bluguermann J. et al. Transcutaneous ultrasound-facilitated coronary thrombolysis during acute myocardial infarction. Am J Cardiol 2003; 92: 454-7.
  • 51 Hacke W, Donnan G, Fieschi C. et al. Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. Lancet 2004; 363: 768-74.
  • 52 Mori E, Yoneda Y, Tabuchi M. et al. Intravenous recombinant tissue plasminogen activator in acute carotid artery territory stroke. Neurology 1992; 42: 976-82.
  • 53 Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med 1995; 333: 1581-7.
  • 54 del Zoppo GJ, Poeck K, Pessin MS. et al. Recombinant tissue plasminogen activator in acute thrombotic and embolic stroke. Ann Neurol 1992; 32: 78-86.
  • 55 Zeumer H, Freitag HJ, Zanella F. et al. Local intraarterial fibrinolytic therapy in patients with stroke: urokinase versus recombinant tissue plasminogen activator (r-TPA). Neuroradiology 1993; 35: 159-62.
  • 56 Alexandrov AV, Demchuk AM, Felberg RA. et al. High rate of complete recanalization and dramatic clinical recovery during tPA infusion when continuously monitored with 2-MHz transcranial doppler monitoring. Stroke 2000; 31: 610-4.
  • 57 Pfaffenberger S, Devcic-Kuhar B, Kollmann C. et al. Can a commercial diagnostic ultrasound device accelerate thrombolysis? An in vitro skull model. Stroke 2005; 36: 124-8.
  • 58 Grolimund P. Transmission of ultrasound through the temporal bone. In: Aaslid R. ed. Transcranial Doppler sonography. Wien/New York: Springer Verlag; 1985: 10-18.
  • 59 Fry FJ, Barger JE. Acoustical properties of the human skull. J Acoust Soc Am 1978; 63: 1576-90.
  • 60 Akiyama M, Ishibashi T, Yamada T. et al. Low-frequency ultrasound penetrates the cranium and enhances thrombolysis in vitro . Neurosurgery 1998; 43: 828-32.
  • 61 Behrens S, Daffertshofer M, Spiegel D. et al. Lowfrequency, low-intensity ultrasound accelerates thrombolysis through the skull. Ultrasound Med Biol 1999; 25: 269-73.
  • 62 Spengos K, Behrens S, Daffertshofer M. et al. Acceleration of thrombolysis with ultrasound through the cranium in a flow model. Ultrasound Med Biol 2000; 26: 889-95.
  • 63 Behrens S, Spengos K, Daffertshofer M. et al. Transcranial ultrasound-improved thrombolysis: diagnostic vs. therapeutic ultrasound. Ultrasound Med Biol 2001; 27: 1683-9.
  • 64 Ishibashi T, Akiyama M, Onoue H. et al. Can transcranial ultrasonication increase recanalization flow with tissue plasminogen activator?. Stroke 2002; 33: 1399-404.
  • 65 Fry FJ, Goss SA, Patrick JT. Transkull focal lesions in cat brain produced by ultrasound. J Neurosurg 1981; 54: 659-63.
  • 66 Nolle F, Nedelmann M, Eicke BM. et al. Side effects of transcranial for thrombolysis used ultrasound – a rat model. Cerebrovasc Dis 2002; 13 (Suppl. 04) 4.
  • 67 Cintas P, Le Traon AP, Larrue V. High rate of recanalization of middle cerebral artery occlusion during 2-MHz transcranial color-coded Doppler continuous monitoring without thrombolytic drug. Stroke 2002; 33: 626-8.
  • 68 Daffertshofer M, Huang Z, Fatar M. et al. Efficacy of sonothrombolysis in a rat model of embolic ischemic stroke. Neurosci Lett 2004; 361: 115-9.
  • 69 Culp WC, Erdem E, Roberson PK. et al. Microbubble potentiated ultrasound as a method of stroke therapy in a pig model: preliminary findings. J Vasc Interv Radiol 2003; 14: 1433-6.
  • 70 Eggers J, Koch B, Meyer K. et al. Effect of ultrasound on thrombolysis of middle cerebral artery occlusion. Ann Neurol 2003; 53: 797-800.
  • 71 Alexandrov AV, Molina CA, Grotta JC. et al. Ultrasound- enhanced systemic thrombolysis for acute ischemic stroke. N Engl J Med 2004; 351: 2170-8.
  • 72 Hardig BM, Persson HW, Gido G. et al. Does lowenergy ultrasound, known to enhance thrombolysis, affect the size of ischemic brain damage?. J Ultrasound Med 2003; 22: 1301-8.
  • 73 Pfaffenberger S, Devcic-Kuhar B, Kollmann C. et al. Can a commercial diagnostic ultrasound device accelerate thrombolysis: An in vitro scull model. Stroke 2005; 36: 124-8.
  • 74 Roy RA, Madenshetty SI, Apfel RE. An acoustic backscattering technique for the detection of transient cavitation produced by microsecond pulses of ultrasound. J Acoust Soc Am 1990; 87: 2451-8.
  • 75 Apfel RE, Holland CK. Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound. Ultrasound Med Biol 1991; 17: 179-85.
  • 76 Tachibana K, Tachibana S. Albumin microbubble echo-contrast material as an enhancer for ultrasound accelerated thrombolysis. Circulation 1995; 92: 1148-50.
  • 77 Porter TR, Le Veen RF, Fox R. et al. Thrombolytic enhancement with perfluorocarbon-exposed sonicated dextrose albumin microbubbles. Am Heart J 1996; 132: 964-8.
  • 78 Wu Y, Unger EC, McCreery TP. et al. Binding and lysing of blood clots using MRX-408. Invest Radiol 1998; 33: 880-5.
  • 79 Kondo I, Mizushige K, Ueda T. et al. Histological observations and the process of ultrasound contrast agent enhancement of tissue plasminogen activator thrombolysis with ultrasound exposure. Jpn Circ J 1999; 63: 478-84.
  • 80 Mizushige K, Kondo I, Ohmori K. et al. Enhancement of ultrasound-accelerated thrombolysis by echo contrast agents: dependence on microbubble structure. Ultrasound Med Biol 1999; 25: 1431-7.
  • 81 Atar S, Luo H, Birnbaum Y. et al. Augmentation of in-vitro clot dissolution by low frequency high-intensity ultrasound combined with antiplatelet and antithrombotic drugs. J Thromb Thrombolysis 2001; 11: 223-8.
  • 82 Nishioka T, Luo H, Fishbein MC. et al. Dissolution of thrombotic arterial occlusion by high intensity, low frequency ultrasound and dodecafluoropentane emulsion: an in vitro and in vivo study. J Am Coll Cardiol 1997; 30: 561-8.
  • 83 Birnbaum Y, Luo H, Nagai T. et al. Noninvasive in vivo clot dissolution without a thrombolytic drug: recanalization of thrombosed iliofemoral arteries by transcutaneous ultrasound combined with intravenous infusion of microbubbles. Circulation 1998; 97: 130-4.
  • 84 Tachibana K. Enhancement of fibrinolysis with ultrasound energy. J Vasc Interv Radiol 1992; 3: 299-303.
  • 85 Shlansky Goldberg RD, Cines DB, Shegal CM. Catheter- delivered ultrasound potentiates in vitro thrombolysis. J Vasc Interv Radiol 1996; 7: 313-20.
  • 86 Tachibana K, Tachibana S. Prototype therapeutic ultrasound emitting catheter for accelerating thrombolysis. J Ultrasound Med 1997; 16: 529-35.
  • 87 Atar S, Luo H, Nagai T. et al. Arterial thrombus dissolution in vivo using a transducer-tipped, high-frequency ultrasound catheter and local low-dose urokinase delivery. J Endovasc Ther 2001; 8: 282-90.
  • 88 Hong AS, Chae JS, Dubin SB. et al. Ultrasonic clot disruption: an in vitro study. Am Heart J 1990; 120: 418-22.
  • 89 Rosenschein U, Bernstein JJ, DiSegni E. et al. Experimental ultrasonic angioplasty: disruption of atherosclerotic plaques and thrombi in vitro and arterial recanalization in vivo . J Am Coll Cardiol 1990; 15: 711-7.
  • 90 Ariani M, Fishbein MC, Chae JS. et al. Dissolution of peripheral arterial thrombi by ultrasound. Circulation 1991; 84: 1680-8.
  • 91 Hartnell GG, Saxton JM, Friedl SE. et al. Ultrasonic thrombus ablation: in vitro assessment of a novel device for intracoronary use. J Interv Cardiol 1993; 6: 69-76.
  • 92 Steffen W, Fishbein MC, Luo H. et al. High intensity, low frequency catheter-delivered ultrasound dissolution of occlusive coronary artery thrombi: an in vitro and in vivo study. J Am Coll Cardiol 1994; 24: 1571-9.
  • 93 Philippe F, Drobinski G, Bucherer C. et al. Effects of ultrasound energy on thrombi in vitro . Cathet Cardiovasc Diagn 1993; 28: 173-8.
  • 94 Siegel RJ, Gunn J, Ahsan A. et al. Use of therapeutic ultrasound in percutaneous coronary angioplasty. Experimental in vitro studies and initial clinical experience. Circulation 1994; 89: 1587-92.
  • 95 Drobinski G, Brisset D, Philippe F. et al. Effects of ultrasound energy on total peripheral artery occlusions: initial angiographic and angioscopic results. J Interv Cardiol 1993; 6: 157-63.
  • 96 Hamm CW, Steffen W, Terres W. et al. Intravascular therapeutic ultrasound thrombolysis in acute myocardial infarctions. Am J Cardiol 1997; 80: 200-4.
  • 97 Rosenschein U, Roth A, Rassin T. et al. Analysis of coronary ultrasound thrombolysis endpoints in acute myocardial infarction (ACUTE trial). Results of the feasibility phase. Circulation 1997; 95: 1411-6.
  • 98 Brosh D, Bartorelli AL, Cribier A. et al. Percutaneous transluminal therapeutic ultrasound for highrisk thrombus-containing lesions in native coronary arteries. Catheter Cardiovasc Interv 2002; 55: 43-9.
  • 99 Rosenschein U, Gaul G, Erbel R. et al. Percutaneous transluminal therapy of occluded saphenous vein grafts: can the challenge be met with ultrasound thrombolysis? [see comments]. Circulation 1999; 99: 26-9.
  • 100 Fischell TA, Haddad N, Baskerville S. et al. Ultrasound thrombolysis for the treatment of thrombotic occlusion of degenerated saphenous vein grafts. Catheter Cardiovasc Interv 2000; 50: 90-5.
  • 101 Singh M, Rosenschein U, Ho KK. et al. Treatment of saphenous vein bypass grafts with ultrasound thrombolysis: a randomized study (ATLAS). Circulation 2003; 107: 2331-6.