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Summary
Antithrombin I (fibrin) is an important inhibitor of thrombin
generation that functions by sequestering thrombin in the form-
ing fibrin clot, and also by reducing the catalytic activity of fibrin-
bound thrombin.Thrombin binding to fibrin takes place at two
classes of non-substrate sites: 1) in the fibrin E domain (two per
molecule) through interaction with thrombin exosite 1; 2) at a
single site on each γ’ chain through interaction with thrombin
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exosite 2.The latter reaction results in allosteric changes that
down-regulate thrombin catalytic activity. Antithrombin I defi-
ciency (afibrinogenemia), defective thrombin binding to fibrin
(antithrombin I defect) found in certain dysfibrinogenemias (e.g.
fibrinogen Naples 1), or a reduced plasma γ’ chain content (re-
duced antithrombin I activity), predispose to intravascular
thrombosis.
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Introduction
Thrombin binds to its substrate, fibrinogen, through an anion-
binding site commonly referred to as ‘exosite 1’ (1, 2). Howell
recognized nearly a century ago that the fibrin clot itself exhibits
significant thrombin-binding potential (3). Subsequently,
thrombin binding associated with fibrin formation in plasma was
termed ‘antithrombin I’ by Seegers more than sixty years ago
(4–6), and I continue to employ that term for this activity of fi-
brin. In recent years, recognition of the functional importance of
antithrombin I for down-regulation of thrombin generation in
plasma has brought a new perspective on its physiological role
(7, 8). This present article provides an update on the constituents
in fibrin that comprise antithrombin I, their mechanisms of ac-
tion, and their physiological role.

Antithrombin I activity
Antithrombin I activity is defined by two classes of non-sub-
strate thrombin-binding sites in fibrin (9, 10), one of relatively
low affinity in the E domain (~2 sites per molecule), and the
other of ‘high’ affinity in D domains of fibrin(ogen) molecules
containing a γ chain variant termed γ' (γ' 427L) (10) (Fig. 1). Al-
together γ' chains comprise ~8% of the total γ chain population
(11, 12). Virtually all γ’ chains are found in a chromatographic
subfraction termed ‘fibrinogen 2’, each molecule of which also
contains a platelet-binding γ chain. ‘Fibrinogen 1’ is homodi-

meric with respect to its γ chains, and accounts for ~85% of
human plasma fibrinogen.

Low-affinity thrombin binding activity reflects thrombin ex-
osite 1 binding in E domain of fibrin, as recently detailed by ana-
lyses of thrombin-fibrin fragment E crystals by Pechik et al. (13)
(Fig. 2). In contrast, ‘high affinity’ thrombin binding to γ’chains
takes place through exosite 2 (14–16) (Fig. 3). The γ’ chain
thrombin binding site is situated between residues 414 and 427,
and tyrosine sulfation at γ'418 and γ'422 increases thrombin
binding potential (17). The binding affinity of thrombin for
γ'-containing fibrin molecules is increased by concomitant fibrin
binding to thrombin exosite 1 (18) (Fig. 1).

The effect of γ’ chain binding to thrombin exosite 2 is more
complex than binding to thrombin exosite 1 at the fibrin E do-
main. The γ’ chain-thrombin interaction induces non-competi-
tive allosteric down-regulation of amidolytic activity at the
thrombin catalytic site and consequently slowed release of fibri-
nopeptide A among other effects (19). This effect is independent
of the slow-fast transition induced by Na+ binding (20) or the ef-
fect that is reflected in the slow cleavage of fibrinogen induced
by thrombin binding to thrombomodulin (21). Because of de-
layed fibrinopeptide cleavage in γ’ chain-containing fibrinogen
2, the fibrin that is produced has finer network fibers and con-
tains more branches than does fibrin 1 (19, 22). This structural
modification of matrix structure also results in delayed fibri-
nolysis (19). The down-regulating effect of the γ’ peptide se-
quence on catalytic site activity is similar to that induced in
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thrombin by other exosite 2-binding proteins like GP1bα or pro-
thrombin fragment 2 (23–26), a monoclonal antibody directed
against an epitope in thrombin exosite 2 (27), and DNA aptamer
HD-22 (28). This suggests that thrombin exosite 2 binding inter-
actions, for example with GP1bα or γ’chains, play a role in vivo
in regulating thrombin generation. In addition to the effects of γ’
chain binding on fibrin formation and lysis, fibrin-mediated en-
hancement of factor XIII activation (29–32) was slower in the
presence of fibrinogen 2 compared with fibrinogen 1 (19). Thus,
γ’ chain-thrombin interactions play an important role in regulat-
ing factor XIII activation.

In addition to the full length γ' chains, a shortened version of
this chain, γ' 423P, is present in most plasmas (33–36). We believe
that γ' 423P chains arise by post-translational proteolytic process-
ing of intact γ' 427L fibrinogen chains, but to date we have not
been able to identify the basis for this occurrence. Since the ulti-
mate C-terminal γ' 424 to 427 sequence is required for thrombin
binding at the γ' site (17), γ' 423P chains lack thrombin binding po-
tential, and their formation would reduce antithrombin I activity
at the expense of the γ' 427L chains.

Antithrombin I and its relationship to
thrombotic disease

The concept that antithrombin I is an important regulator of
thrombin activity in clotting blood (8) is based upon a number of
prior observations and reports: i) Fibrin from certain congenital
dysfibrinogens, e.g. fibrinogen New York I (9) and fibrinogen
Naples I (18, 37, 38), exhibit reduced thrombin binding capacity
and are associated with marked venous or arterial thromboem-
bolism. ii) Paradoxically, severe thromboembolic disease, both
venous and arterial, occurs in afibrinogenemia and in hypofibri-
nogenemia (39–47) often in association with the infusion of fi-
brinogen. iii) Increased levels of prothrombin activation frag-
ment F1+2 (48, 49) or thrombin-antithrombin (TAT) complexes
(47, 48) are found in afibrinogenemic plasma (i.e. congenital
antithrombin I deficiency), and these abnormal levels can be
normalized by fibrinogen infusions (47, 49), further suggesting
that an underlying hypercoagulable state exists in this condition.
iv) The report that an afibrinogenemic subject developed occlus-
ive peripheral arterial thrombosis in the absence of a fibrinogen
infusion (47) seems to be analogous to studies in ferric chloride-
injured afibrinogenemic mice, which developed abundant in-
travascular thrombi at the site of injury that characteristically
embolized downstream (50). v) The demonstration by Dupuy et
al. (47) that increased thrombin generation in their patient’s plas-

Figure 1: Diagram of fibrin features that
are relevant to antithrombin I, including
details on the thrombin-binding γ' 427L

chains and non-thrombin-binding γ' 423P

chains. The donor-acceptor glutamine (Q) and
lysine (K) residues that are common to all γ
chains, and that become reciprocally cross-
linked by factor XIII are shown in red. Residues
that are unique to γ'chains are blue. Thrombin
molecules are red and exosites 1 and 2 are
green. The arrow indicates a thrombin mol-
ecule that is bound by both of its exosites to a
γ'chain-containing fibrin molecule and to the E
domain. Other thrombin molecules shown in
this diagram are bound only by their exosites 1
to E domains. The EA and EB polymerization
sites in the fibrin E domain that bind to com-
plementary sites in neighboring D domains are
indicated.

Figure 2:Three-dimensional structure of two thrombin mol-
ecules bound to a fibrin E fragment that is projected from a
ribbon diagram of a fibrin molecule. The thrombin-fibrin complex
is drawn as a ribbon diagram along a two-fold symmetry axis perpendi-
cular to the plane of the page. Aα, Bβ, and γ chain fragments are blue,
green, and red, respectively. Thrombin molecules are in beige, and the
residues included in exosite 1 are in orange. The PPACK inhibitor bound
to the active site is in magenta. Adapted from Pechik et al. (13).
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ma was normalized by addition of fibrinogen underscored the
thrombin inhibitory role of plasma fibrinogen. Demonstrating
that fibrinogen 2 (γA/γ') had a more profound effect in normaliz-
ing thrombin generation in afibrinogenemic plasma than did fi-
brinogen 1 (γA/γA) (7), emphasized the dominant role of γ'
chains in thrombin binding and inhibition by fibrin. Overall,
these considerations indicate that antithrombin I is a major
thrombin inhibitor.

In addition to evidence discussed above, there have been
more recent reports suggesting that the content of γ'-containing
fibrinogen in plasma has a relationship to the incidence of
thrombotic disease (51–53). Uitte de Willige et al. (53) investi-
gated the effect of γ'-fibrinogen/total fibrinogen ratios on the risk
of venous thrombosis in the Leiden Thrombophilia Study (54).
They demonstrated that reduced γ'-fibrinogen/total fibrinogen
ratios were associated with an increased thrombosis risk and
were correlated with a particular γ chain gene haplotype termed
FGG-H2. The potentially relevant single nucleotide polymor-
phisms (SNPs) of that haplotype are located in intron 9 (9615
C/T) and just downstream from the polyadenylation site of exon
10 (10034 C/T). These may individually or collectively result in
reduced production of γ' chain transcripts, though other expla-
nations may exist.

On the other hand, Drouet et al. (51) suggested that subjects
with elevated γ'-fibrinogen/total fibrinogen ratios correlated
with a higher incidence of arterial thrombosis and Lovely et al.
(52) reported an association between elevated levels of γ' chains
and coronary artery disease, although this association did not
hold with respect to the γ'-fibrinogen/total fibrinogen ratios. Sig-
nificant elevations in γ' chain concentration were recently re-
ported by Manilla et al. (55) in patients with myocardial infarc-
tion, although the differences were rather small (~10 %), and no
differences were found in the γ'-fibrinogen/total fibrinogen ra-
tios. More studies will be required to place these several reports
in the proper mechanistic perspective.

Finally, thrombotic microangiopathy (TMA) is a life-
threatening syndrome with major forms that include thrombotic
thrombocytopenic purpura (TTP) and haemolytic uremic syn-
drome (HUS), is characterized by microangiopathic haemolytic
anaemia, thrombocytopenia, and microvascular thrombosis ac-
companied by varying degrees of tissue ischemia and infarction.
We investigated a group of TMA subjects and found that there
was an association between the syndrome and a lowered plasma
γ' chain content (36). These observations suggest that low levels
of antithrombin I activity may contribute to microvascular
thrombosis in TMA.

Figure 3: Crystal structure of the γ' pep-
tide (γ'408–427) making contacts with
basic residues (blue) in exosite 2 of
thrombin. From Pineda et al. (16). The γ' pep-
tide interactions closely reproduce heparin
binding at this site (56), thereby explaining why
the binding of the γ' peptide and heparin are
mutually exclusive and why thrombin bound to
fibrin is resistant to inactivation by antithrom-
bin and heparin cofactor II (14, 57).
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