Thromb Haemost 2011; 106(05): 779-786
DOI: 10.1160/TH11-05-0321
Theme Issue Article
Schattauer GmbH

Cellular immunity, low-density lipoprotein and atherosclerosis: Break of tolerance in the artery wall

Daniel F. J. Ketelhuth
1   Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
,
Göran K. Hansson
› Author Affiliations
Further Information

Publication History

Received:11 May 2011

Accepted after minor revision: 06 September 2011

Publication Date:
23 November 2017 (online)

Summary

Atherosclerosis is a chronic inflammatory disease. Atherosclerotic plaques contain abundant immune cells that can dictate and effect inflammatory responses. Among them, T cells are present during all stages of the disease suggesting that they are essential in the initiation as well as the progression of plaque. Experimental as well as clinical research has demonstrated different T cell subsets, i.e. CD4+ Th1, Th2, Th17, and Treg as well as CD8+ and NKT cells in the plaque. Moreover, candidate antigens inducing T cell responses have been identified. Knowledge about the pathological role of these cells in atherogenesis may lead to development of new therapies. This review provides an overview of the research field of cellular immunity in atherosclerosis. It emphasises the events and findings involving antigen specific T cells, in particular low-density lipoprotein-specific T cells.

 
  • References

  • 1 Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005; 352: 1685-1695.
  • 2 Murphy K, Travers P, Walport M. Janeway's Immunobiology. New York: Garland Science; 2008
  • 3 Abbas AK, Lichtman AH. Cellular and Molecular Immunology. Updated Edition; Oxford Elsevier Ltd: 2010
  • 4 Hansson GK, Jonasson L. The discovery of cellular immunity in the atherosclerotic plaque. Arterioscler Thromb Vasc Biol 2009; 29: 1714-1717.
  • 5 Goldstein JL, Ho YK, Basu SK. et al. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA 1979; 76: 333-337.
  • 6 Schaffner T, Taylor K, Bartucci EJ. et al. Arterial foam cells with distinctive immunomorphologic and histochemical features of macrophages. Am J Pathol 1980; 100: 57-80.
  • 7 Jonasson L, Holm J, Skalli O. et al. Expression of class II transplantation antigen on vascular smooth muscle cells in human atherosclerosis. J Clin Invest 1985; 76: 125-131.
  • 8 Jonasson L, Holm J, Skalli O. et al. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 1986; 6: 131-138.
  • 9 Gown AM, Tsukada T, Ross R. Human atherosclerosis. II. Immunocytochemical analysis of the cellular composition of human atherosclerotic lesions. Am J Pathol 1986; 125: 191-207.
  • 10 Zhou X, Stemme S, Hansson GK. Evidence for a local immune response in atherosclerosis. CD4+ T cells infiltrate lesions of apolipoprotein-E-deficient mice. Am J Pathol 1996; 149: 359-366.
  • 11 Hansson GK, Holm J, Jonasson L. Detection of activated T lymphocytes in the human atherosclerotic plaque. Am J Pathol 1989; 135: 169-175.
  • 12 Huber SA, Sakkinen P, David C. et al. T helper-cell phenotype regulates atherosclerosis in mice under conditions of mild hypercholesterolemia. Circulation 2001; 103: 2610-2616.
  • 13 Uyemura K, Demer LL, Castle SC. et al. Cross-regulatory roles of interleukin (IL)-12 and IL-10 in atherosclerosis. J Clin Invest 1996; 97: 2130-2138.
  • 14 de Boer OJ, van der Meer JJ, Teeling P. et al. Low numbers of FOXP3 positive regulatory T cells are present in all developmental stages of human atherosclerotic lesions. PLoS One 2007; 2: 779
  • 15 Eid RE, Rao DA, Zhou J. et al. Interleukin-17 and interferon-gamma are produced concomitantly by human coronary artery-infiltrating T cells and act synergistically on vascular smooth muscle cells. Circulation 2009; 119: 1424-1432.
  • 16 Erbel C, Dengler TJ, Wangler S. et al. Expression of IL-17A in human atherosclerotic lesions is associated with increased inflammation and plaque vulnerability. Basic research in cardiology 2011; 106: 125-134.
  • 17 Kleindienst R, Xu Q, Willeit J. et al. Immunology of atherosclerosis. Demonstration of heat shock protein 60 expression and T lymphocytes bearing alpha/beta or gamma/delta receptor in human atherosclerotic lesions. Am J Pathol 1993; 142: 1927-1937.
  • 18 Tupin E, Nicoletti A, Elhage R. et al. CD1d-dependent activation of NKT cells aggravates atherosclerosis. J Exp Med 2004; 199: 417-422.
  • 19 Chan WL, Pejnovic N, Hamilton H. et al. Atherosclerotic abdominal aortic aneurysm and the interaction between autologous human plaque-derived vascular smooth muscle cells, type 1 NKT, and helper T cells. Circ Res 2005; 96: 675-683.
  • 20 Kyriakakis E, Cavallari M, Andert J. et al. Invariant natural killer T cells: Linking inflammation and neovascularization in human atherosclerosis. Eur J Immunol 2010; 40: 3268-3279.
  • 21 Zhou X, Robertson AK, Rudling M. et al. Lesion development and response to immunization reveal a complex role for CD4 in atherosclerosis. Circ Res 2005; 96: 427-434.
  • 22 Zhou X, Nicoletti A, Elhage R. et al. Transfer of CD4(+) T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation 2000; 102: 2919-2922.
  • 23 Robertson AK, Rudling M, Zhou X. et al. Disruption of TGF-beta signaling in T cells accelerates atherosclerosis. J Clin Invest 2003; 112: 1342-1350.
  • 24 Buono C, Binder CJ, Stavrakis G. et al. T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc Natl Acad Sci USA 2005; 102: 1596-1601.
  • 25 Buono C, Come CE, Stavrakis G. et al. Influence of interferon-gamma on the extent and phenotype of diet-induced atherosclerosis in the LDLR-deficient mouse. Arterioscler Thromb Vasc Biol 2003; 23: 454-460.
  • 26 Davenport P, Tipping PG. The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am J Pathol 2003; 163: 1117-1125.
  • 27 King VL, Szilvassy SJ, Daugherty A. Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor-/- mice. Arterioscler Thromb Vasc Biol 2002; 22: 456-461.
  • 28 Binder CJ, Hartvigsen K, Chang MK. et al. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J Clin Invest 2004; 114: 427-437.
  • 29 Mallat Z, Besnard S, Duriez M. et al. Protective role of interleukin-10 in atherosclerosis. Circ Res 1999; 85: e17-24.
  • 30 Pinderski Oslund LJ, Hedrick CC, Olvera T. et al. Interleukin-10 blocks atherosclerotic events in vitro and in vivo. Arterioscler Thromb Vasc Biol 1999; 19: 2847-2853.
  • 31 van Es T, van Puijvelde GH, Ramos OH. et al. Attenuated atherosclerosis upon IL-17R signaling disruption in LDLr deficient mice. Biochem Biophys Res Commun 2009; 388: 261-265.
  • 32 Erbel C, Chen L, Bea F. et al. Inhibition of IL-17A attenuates atherosclerotic lesion development in apoE-deficient mice. J Immunol 2009; 183: 8167-8175.
  • 33 Gao Q, Jiang Y, Ma T. et al. A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice. J Immunol 2010; 185: 5820-5827.
  • 34 Madhur MS, Funt SA, Li L. et al. Role of interleukin 17 in inflammation, atherosclerosis, and vascular function in apolipoprotein e-deficient mice. Arterioscler Thromb Vasc Biol 2011; 31: 1565-1572.
  • 35 Taleb S, Romain M, Ramkhelawon B. et al. Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J Exp Med 2009; 206: 2067-2077.
  • 36 Liuzzo G, Goronzy JJ, Yang H. et al. Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation 2000; 101: 2883-2888.
  • 37 Nakajima T, Schulte S, Warrington KJ. et al. T-cell-mediated lysis of endothelial cells in acute coronary syndromes. Circulation 2002; 105: 570-575.
  • 38 Warrington KJ, Kent PD, Frye RL. et al. Rheumatoid arthritis is an independent risk factor for multi-vessel coronary artery disease: a case control study. Arthritis Res Ther 2005; 7: R984-991.
  • 39 Jager A, Kuchroo VK. Effector and regulatory T-cell subsets in autoimmunity and tissue inflammation. Scand J Immunol 2010; 72: 173-184.
  • 40 Ait-Oufella H, Salomon BL, Potteaux S. et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med 2006; 12: 178-180.
  • 41 Mallat Z, Gojova A, Marchiol-Fournigault C. et al. Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ Res 2001; 89: 930-934.
  • 42 Caligiuri G, Rudling M, Ollivier V. et al. Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Mol Med 2003; 9: 10-17.
  • 43 Mallat Z, Gojova A, Brun V. et al. Induction of a regulatory T cell type 1 response reduces the development of atherosclerosis in apolipoprotein E-knockout mice. Circulation 2003; 108: 1232-1237.
  • 44 Klingenberg R, Lebens M, Hermansson A. et al. Intranasal immunization with an apolipoprotein B-100 fusion protein induces antigen-specific regulatory T cells and reduces atherosclerosis. Arterioscler Thromb Vasc Biol 2010; 30: 946-952.
  • 45 Voelkl S, Gary R, Mackensen A. Characterization of the immunoregulatory function of human TCR-alphabeta+ CD4- CD8- double-negative T cells. Eur J Immunol 2011; 41: 739-748.
  • 46 Elhage R, Gourdy P, Brouchet L. et al. Deleting TCR alpha beta+ or CD4+ T lymphocytes leads to opposite effects on site-specific atherosclerosis in female apolipoprotein E-deficient mice. Am J Pathol 2004; 165: 2013-2018.
  • 47 Olofsson PS, Soderstrom LA, Wagsater D. et al. CD137 is expressed in human atherosclerosis and promotes development of plaque inflammation in hypercholesterolemic mice. Circulation 2008; 117: 1292-1301.
  • 48 Pober JS, Collins T, Gimbrone Jr. MA. et al. Lymphocytes recognize human vascular endothelial and dermal fibroblast Ia antigens induced by recombinant immune interferon. Nature 1983; 305: 726-729.
  • 49 Gerdes N, Zhu L, Ersoy M. et al. Platelets regulate CD4+ T-cell differentiation via multiple chemokines in humans. Thromb Haemost 2011; 106: 353-362.
  • 50 Henriksen T, Mahoney EM, Steinberg D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins. Proc Natl Acad Sci USA 1981; 78: 6499-6503.
  • 51 Steinbrecher UP, Parthasarathy S, Leake DS. et al. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci USA 1984; 81: 3883-3887.
  • 52 Palinski W, Rosenfeld ME, Yla-Herttuala S. et al. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA 1989; 86: 1372-1376.
  • 53 Yla-Herttuala S, Palinski W, Rosenfeld ME. et al. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest 1989; 84: 1086-1095.
  • 54 Itabe H, Ueda M. Measurement of plasma oxidized low-density lipoprotein and its clinical implications. J Atheroscler Thromb 2007; 14: 1-11.
  • 55 Esterbauer H, Dieber-Rotheneder M, Waeg G. et al. Biochemical, structural, and functional properties of oxidized low-density lipoprotein. Chem Res Toxicol 1990; 3: 77-92.
  • 56 Tabas I, Williams KJ, Boren J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 2007; 116: 1832-1844.
  • 57 Hevonoja T, Pentikainen MO, Hyvonen MT. et al. Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL. Biochim Biophys Acta 2000; 1488: 189-210.
  • 58 Leitinger N, Watson AD, Faull KF. et al. Monocyte binding to endothelial cells induced by oxidized phospholipids present in minimally oxidized low density lipoprotein is inhibited by a platelet activating factor receptor antagonist. Adv Exp Med Biol 1997; 433: 379-382.
  • 59 Gharavi NM, Alva JA, Mouillesseaux KP. et al. Role of the Jak/STAT pathway in the regulation of interleukin-8 transcription by oxidized phospholipids in vitro and in atherosclerosis in vivo. J Biol Chem 2007; 282: 31460-31468.
  • 60 Wang Z, Klipfell E, Bennett BJ. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472: 57-63.
  • 61 Esterbauer H, Gebicki J, Puhl H. et al. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med 1992; 13: 341-390.
  • 62 Bochkov VN. Inflammatory profile of oxidized phospholipids. Thromb Haemost 2007; 97: 348-354.
  • 63 Svensjo E, Boschcov P, Ketelhuth DF. et al. Increased microvascular permeability in the hamster cheek pouch induced by oxidized low density lipoprotein (oxLDL) and some fragmented apolipoprotein B proteins. Inflamm Res 2003; 52: 215-220.
  • 64 Palinski W, Yla-Herttuala S, Rosenfeld ME. et al. Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein. Arteriosclerosis 1990; 10: 325-335.
  • 65 Ketelhuth DF, Tonini GC, Carvalho MD. et al. Autoantibody response to chromatographic fractions from oxidized LDL in unstable angina patients and healthy controls. Scand J Immunol 2008; 68: 456-462.
  • 66 Zhou X, Paulsson G, Stemme S. et al. Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice. J Clin Invest 1998; 101: 1717-1725.
  • 67 Fernvik EC, Ketelhuth DF, Russo M. et al. The autoantibody repertoire against copper- or macrophage-modified LDL differs in normolipidemics and hypercholesterolemic patients. J Clin Immunol 2004; 24: 170-176.
  • 68 Yla-Herttuala S, Palinski W, Butler SW. et al. Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscler Thromb 1994; 14: 32-40.
  • 69 Rossmann A, Henderson B, Heidecker B. et al. T-cells from advanced atherosclerotic lesions recognize hHSP60 and have a restricted T-cell receptor repertoire. Exp Gerontol 2008; 43: 229-237.
  • 70 Paulsson G, Zhou X, Tornquist E. et al. Oligoclonal T cell expansions in atherosclerotic lesions of apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2000; 20: 10-17.
  • 71 Frostegard J, Wu R, Giscombe R. et al. Induction of T-cell activation by oxidized low density lipoprotein. Arterioscler Thromb 1992; 12: 461-467.
  • 72 Stemme S, Faber B, Holm J. et al. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci USA 1995; 92: 3893-3897.
  • 73 Nicoletti A, Paulsson G, Caligiuri G. et al. Induction of neonatal tolerance to oxidized lipoprotein reduces atherosclerosis in ApoE knockout mice. Mol Med 2000; 6: 283-290.
  • 74 Zhou X, Robertson AK, Hjerpe C. et al. Adoptive transfer of CD4+ T cells reactive to modified low-density lipoprotein aggravates atherosclerosis. Arterioscler Thromb Vasc Biol 2006; 26: 864-870.
  • 75 Hjerpe C, Johansson D, Hermansson A. et al. Dendritic cells pulsed with malondialdehyde modified low density lipoprotein aggravate atherosclerosis in Apoe(-/-) mice. Atherosclerosis 2010; 209: 436-441.
  • 76 Hermansson A, Ketelhuth DF, Strodthoff D. et al. Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. J Exp Med 2010; 207: 1081-1093.
  • 77 Fredrikson GN, Hedblad B, Berglund G. et al. Identification of immune responses against aldehyde-modified peptide sequences in apoB associated with cardiovascular disease. Arterioscler Thromb Vasc Biol 2003; 23: 872-878.
  • 78 Luth S, Huber S, Schramm C. et al. Ectopic expression of neural autoantigen in mouse liver suppresses experimental autoimmune neuroinflammation by inducing antigen-specific Tregs. The Journal of clinical investigation 2008; 118: 3403-3410.
  • 79 Hermansson A, Johansson DK, Ketelhuth DF. et al. Immunotherapy with tolerogenic apolipoprotein B-100-loaded dendritic cells attenuates atherosclerosis in hypercholesterolemic mice. Circulation 2011; 123: 1083-1091.
  • 80 Sjogren P, Fredrikson GN, Samnegard A. et al. High plasma concentrations of autoantibodies against native peptide 210 of apoB-100 are related to less coronary atherosclerosis and lower risk of myocardial infarction. Eur Heart J 2008; 29: 2218-2226.
  • 81 Fredrikson GN, Soderberg I, Lindholm M. et al. Inhibition of atherosclerosis in apoE-null mice by immunization with apoB-100 peptide sequences. Arterioscler Thromb Vasc Biol 2003; 23: 879-884.
  • 82 Kris-Etherton PM, Lichtenstein AH, Howard BV. et al. Antioxidant vitamin supplements and cardiovascular disease. Circulation 2004; 110: 637-641.
  • 83 Blasi C. The autoimmune origin of atherosclerosis. Atherosclerosis 2008; 201: 17-32.
  • 84 Harats D, Yacov N, Gilburd B. et al. Oral tolerance with heat shock protein 65 attenuates Mycobacterium tuberculosis-induced and high-fat-diet-driven atherosclerotic lesions. J Am Coll Cardiol 2002; 40: 1333-1338.
  • 85 Klingenberg R, Ketelhuth DF, Strodthoff D. et al. Subcutaneous immunization with heat shock protein-65 reduces atherosclerosis in Apoe(-/-) mice. Immunobiology. 2011: i n press
  • 86 Xu Q, Dietrich H, Steiner HJ. et al. Induction of arteriosclerosis in normocholesterolemic rabbits by immunization with heat shock protein 65. Arterioscler Thromb 1992; 12: 789-799.
  • 87 Afek A, George J, Gilburd B. et al. Immunization of low-density lipoprotein receptor deficient (LDL-RD) mice with heat shock protein 65 (HSP-65) promotes early atherosclerosis. J Autoimmun 2000; 14: 115-121.
  • 88 Young F, Capewell S, Ford ES. et al. Coronary mortality declines in the U.S. between 1980 and 2000 quantifying the contributions from primary and secondary prevention. Am J Prev Med 2010; 39: 228-234.
  • 89 Lloyd-Jones D, Adams RJ, Brown TM. et al. Heart disease and stroke statistics--2010 update: a report from the American Heart Association. Circulation 2010; 121: e46-e215.
  • 90 Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature 2011; 473: 317-325.