Thromb Haemost 2011; 106(05): 839-848
DOI: 10.1160/TH11-07-0501
Theme Issue Article
Schattauer GmbH

Neutrophilic granulocytes – promiscuous accelerators of atherosclerosis

Maik Drechsler
1   Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich, Germany
,
Yvonne Döring
1   Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich, Germany
,
Remco T. A. Megens
1   Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich, Germany
,
Oliver Soehnlein
1   Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich, Germany
› Author Affiliations
Further Information

Publication History

Received: 20 July 2011

Accepted after minor revision 28 September 2011

Publication Date:
23 November 2017 (online)

Summary

Neutrophils, as part of the innate immune system, are classically described to be main actors during the onset of inflammation enforcing rapid neutralisation and clearance of pathogens. Besides their wellstudied role in acute inflammatory processes, recent advances strongly indicate a so far underappreciated importance of neutrophils in initiation and development of atherosclerosis. This review focuses on current findings on the role of neutrophils in atherosclerosis. As pro-inflammatory mechanisms of neutrophils have primarily been studied in the microvascular environment; we here aim at translating these into the context of macrovascular inflammation in atherosclerosis. Since much of the pro-inflammatory activities of neutrophils stem from instructing neighbouring cell types, we highlight the promiscuous interplay between neutrophils and platelets, monocytes, T lymphocytes, and dendritic cells and its possible relevance to atherosclerosis.

 
  • References

  • 1 Ross R. Atherosclerosis is an inflammatory disease. Am Heart J 1999; 138: S419-420.
  • 2 Hansson GK, Hermansson A. The immune system in atherosclerosis. Nature Immunol 2011; 12: 204-212.
  • 3 Weber C, Zernecke A, Libby P. The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Immunol 2008; 8: 802-815.
  • 4 Drechsler M, Megens RTA, van Zandvoort M. et al. Hyperlipidemia-Triggered Neutrophilia Promotes Early Atherosclerosis. Circulation 2010; 122: 1837-1845.
  • 5 Rotzius P, Thams S, Soehnlein O. et al. Distinct infiltration of neutrophils in lesion shoulders in ApoE-/- mice. Am J Pathol 2010; 177: 493-500.
  • 6 Zernecke A, Bot I, Djalali-Talab Y. et al. Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. Circ Res 2008; 102: 209-217.
  • 7 Ionita MG, van den Borne P, Catanzariti LM. et al. High neutrophil numbers in human carotid atherosclerotic plaques are associated with characteristics of rupture-prone lesions. Arterioscler Thromb Vasc Biol 2010; 30: 1842-1848.
  • 8 Averill MM, Barnhart S, Becker L. et al. S100A9 differentially modifies phenotypic states of neutrophils, macrophages, and dendritic cells: implications for atherosclerosis and adipose tissue inflammation. Circulation 2011; 123: 1216-1226.
  • 9 Soehnlein O, Lindbom L. Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 2010; 10: 427-439.
  • 10 Galligan C, Yoshimura T. Phenotypic and functional changes of cytokine-activated neutrophils. Chem Immunol Allergy 2003; 83: 24-44.
  • 11 van Leeuwen M, Gijbels MJ, Duijvestijn A. et al. Accumulation of myeloperoxidase-positive neutrophils in atherosclerotic lesions in LDLR-/- mice. Arterioscler Thromb Vasc Biol 2008; 28: 84-89.
  • 12 Christopher MJ, Link DC. Regulation of neutrophil homeostasis. Curr Opin Hematol 2007; 14: 3-8.
  • 13 Kantari C, Pederzoli-Ribeil M, Witko-Sarsat V. The role of neutrophils and monocytes in innate immunity. Contrib Microbiol 2008; 15: 118-146.
  • 14 Ogawa M. Differentiation and proliferation of hematopoietic stem cells. Blood 1993; 81: 2844-2853.
  • 15 Liu F, Wu HY, Wesselschmidt R. et al. Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity 1996; 5: 491-501.
  • 16 Lieschke GJ, Grail D, Hodgson G. et al. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 1994; 84: 1737-1746.
  • 17 Sweetnam PM, Thomas HF, Yarnell JW. et al. Total and differential leukocyte counts as predictors of ischemic heart disease: the Caerphilly and Speedwell studies. Am J Epidemiol 1997; 145: 416-421.
  • 18 Kawaguchi H, Mori T, Kawano T. et al. Band neutrophil count and the presence and severity of coronary atherosclerosis. Am Heart J 1996; 132: 9-12.
  • 19 Yvan-Charvet L, Pagler T, Gautier EL. et al. ATP-Binding Cassette Transporters and HDL Suppress Hematopoietic Stem Cell Proliferation. Science 2010; 328: 1689-1693.
  • 20 Nishina PM, Wang J, Toyofuku W. et al. Atherosclerosis and plasma and liver lipids in nine inbred strains of mice. Lipids 1993; 28: 599-605.
  • 21 Martin C, Burdon PC, Bridger G. et al. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 2003; 19: 583-593.
  • 22 Boekholdt SM, Peters RJ, Hack CE. et al. IL-8 plasma concentrations and the risk of future coronary artery disease in apparently healthy men and women: the EPIC-Norfolk prospective population study. Arterioscl Thromb Vasc Biol 2004; 24: 1503-1508.
  • 23 Rankin SM. The bone marrow: a site of neutrophil clearance. J Leukoc Biol 2010; 88: 241-251.
  • 24 Stark MA, Huo Y, Burcin TL. et al. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 2005; 22: 285-294.
  • 25 Semerad CL, Christopher MJ, Liu F. et al. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 2005; 106: 3020-3027.
  • 26 Perkins ND. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 2007; 8: 49-62.
  • 27 Steinman L. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med 2007; 13: 139-145.
  • 28 Fossiez F, Djossou O, Chomarat P. et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 1996; 183: 2593-2603.
  • 29 Oppmann B, Lesley R, Blom B. et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 2000; 13: 715-725.
  • 30 von Vietinghoff S, Ley K. Homeostatic regulation of blood neutrophil counts. J Immunol 2008; 181: 5183-5188.
  • 31 Smith E, Prasad KM, Butcher M. et al. Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation 2010; 121: 1746-1755.
  • 32 Ley K, Laudanna C, Cybulsky MI. et al. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 2007; 7: 678-689.
  • 33 Zernecke A, Shagdarsuren E, Weber C. Chemokines in atherosclerosis: an update. Arterioscler Thromb Vasc Biol 2008; 28: 1897-1908.
  • 34 Weber C, Fraemohs L, Dejana E. The role of junctional adhesion molecules in vascular inflammation. Nat Rev Immunol 2007; 7: 467-477.
  • 35 Soehnlein O, Weber C. Myeloid cells in atherosclerosis: initiators and decision shapers. Semin Immunopathol 2009; 31: 35-47.
  • 36 Johnson-Tidey RR, McGregor JL, Taylor PR. et al. Increase in the adhesion molecule P-selectin in endothelium overlying atherosclerotic plaques. Coexpression with intercellular adhesion molecule-1. Am J Pathol 1994; 144: 952-961.
  • 37 Johnson RC, Chapman SM, Dong ZM. et al. Absence of P-selectin delays fatty streak formation in mice. J Clin Invest 1997; 99: 1037-1043.
  • 38 Dong ZM, Chapman SM, Brown AA. et al. The combined role of P- and E-selectins in atherosclerosis. J Clin Invest 1998; 102: 145-152.
  • 39 Eriksson EE, Xie X, Werr J. et al. Direct viewing of atherosclerosis in vivo: plaque invasion by leukocytes is initiated by the endothelial selectins. FASEB J 2001; 15: 1149-1157.
  • 40 Smith CW, Marlin SD, Rothlein R. et al. Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J Clin Invest 1989; 83: 2008-2017.
  • 41 Yang L, Froio RM, Sciuto TE. et al. ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-alpha-activated vascular endothelium under flow. Blood 2005; 106: 584-592.
  • 42 Nageh MF, Sandberg ET, Marotti KR. et al. Deficiency of inflammatory cell adhesion molecules protects against atherosclerosis in mice. Arterioscler Thromb Vasc Biol 1997; 17: 1517-1520.
  • 43 Collins RG, Velji R, Guevara NV. et al. P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J Exp Med 2000; 191: 189-194.
  • 44 Ozaki H, Ishii K, Horiuchi H. et al. Cutting edge: combined treatment of TNF-alpha and IFN-gamma causes redistribution of junctional adhesion molecule in human endothelial cells. J Immunol 1999; 163: 553-557.
  • 45 Keiper T, Al-Fakhri N, Chavakis E. et al. The role of junctional adhesion molecule-C (JAM-C) in oxidized LDL-mediated leukocyte recruitment. FASEB J 2005; 19: 2078-2080.
  • 46 Woodfin A, Voisin MB, Imhof BA. et al. Endothelial cell activation leads to neutrophil transmigration as supported by the sequential roles of ICAM-2, JAM-A, and PECAM-1. Blood 2009; 113: 6246-6257.
  • 47 Woodfin A, Reichel CA, Khandoga A. et al. JAM-A mediates neutrophil transmigration in a stimulus-specific manner in vivo: evidence for sequential roles for JAM-A and PECAM-1 in neutrophil transmigration. Blood 2007; 110: 1848-1856.
  • 48 Woodfin A, Voisin MB, Beyrau M. et al. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nature Immunol 2011; 12: 761-769.
  • 49 Subbarao K, Jala VR, Mathis S. et al. Role of leukotriene B4 receptors in the development of atherosclerosis: potential mechanisms. Arterioscler Thromb Vasc Biol 2004; 24: 369-375.
  • 50 Kumar V, Sharma A. Neutrophils: Cinderella of innate immune system. Int Immunopharmacol 2010; 10: 1325-1334.
  • 51 Speidl WS, Exner M, Amighi J. et al. Complement component C5a predicts future cardiovascular events in patients with advanced atherosclerosis. Eur Heart J 2005; 26: 2294-2299.
  • 52 Speidl WS, Kastl SP, Hutter R. et al. The complement component C5a is present in human coronary lesions in vivo and induces the expression of MMP-1 and MMP-9 in human macrophages in vitro. FASEB J 2011; 25: 35-44.
  • 53 Chakraborti T, Mandal A, Mandal M, Das S, Chakraborti S. Complement activation in heart diseases. Role of oxidants. Cell Signal 2000; 12: 607-617.
  • 54 Soehnlein O, Drechsler M, Hristov M. et al. Functional alterations of myeloid cell subsets in hyperlipidaemia: relevance for atherosclerosis. J Cell Mol Med 2009; 13: 4293-4303.
  • 55 Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature 2011; 473: 317-325.
  • 56 Soehnlein O, Weber C, Lindbom L. Neutrophil granule proteins tune monocytic cell function. Trends Immunol 2009; 30: 538-546.
  • 57 Muller I, Munder M, Kropf P. et al. Polymorphonuclear neutrophils and T lymphocytes: strange bedfellows or brothers in arms?. Trends Immunol 2009; 30: 522-530.
  • 58 Yang D, de la Rosa G, Tewary P. et al. Alarmins link neutrophils and dendritic cells. Trends Immunol 2009; 30: 531-537.
  • 59 Clark SR, Ma AC, Tavener SA. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature Med 2007; 13: 463-469.
  • 60 Zarbock A, Singbartl K, Ley K. Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation. J Clin Invest 2006; 116: 3211-3219.
  • 61 Kornerup KN, Salmon GP, Pitchford SC. et al. Circulating platelet-neutrophil complexes are important for subsequent neutrophil activation and migration. J Appl Physiol 2010; 109: 758-767.
  • 62 Nijm J, Wikby A, Tompa A. et al. Circulating levels of proinflammatory cytokines and neutrophil-platelet aggregates in patients with coronary artery disease. Am J Cardiol 2005; 95: 452-456.
  • 63 Lievens D, Eijgelaar WJ, Biessen EA. et al. The multi-functionality of CD40L and its receptor CD40 in atherosclerosis. Thromb Haemost 2009; 102: 206-214.
  • 64 Vanichakarn P, Blair P, Wu C. et al. Neutrophil CD40 enhances platelet-mediated inflammation. Thromb Res 2008; 122: 346-358.
  • 65 Chen G, Han G, Wang J. et al. Induction of active tolerance and involvement of CD1d-restricted natural killer T cells in anti-CD3 F(ab')2 treatment-reversed new-onset diabetes in nonobese diabetic mice. Am J Pathol 2008; 172: 972-979.
  • 66 Lievens D, Zernecke A, Seijkens T. et al. Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood 2010; 116: 4317-4327.
  • 67 Smook ML, Heeringa P, Damoiseaux JG. et al. Leukocyte CD40L deficiency affects the CD25(+) CD4 T cell population but does not affect atherosclerosis. Atherosclerosis 2005; 183: 275-282.
  • 68 von Hundelshausen P, Weber KS, Huo Y. et al. RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation 2001; 103: 1772-1777.
  • 69 Huo Y, Schober A, Forlow SB. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 2003; 9: 61-67.
  • 70 Braunersreuther V, Zernecke A, Arnaud C. et al. Ccr5 but not Ccr1 deficiency reduces development of diet-induced atherosclerosis in mice. Arterioscler Thromb Vasc Biol 2007; 27 (02) 9-373.
  • 71 Brinkmann V, Reichard U, Goosmann C. et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303: 1532-1535.
  • 72 Fuchs TA, Brill A, Duerschmied D. et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA 2010; 107: 15880-15885.
  • 73 Auffray C, Fogg D, Garfa M. et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007; 317: 666-670.
  • 74 Soehnlein O, Xie X, Ulbrich H. et al. Neutrophil-derived heparin-binding protein (HBP/CAP37) deposited on endothelium enhances monocyte arrest under flow conditions. J Immunol 2005; 174: 6399-6405.
  • 75 Lee TD, Gonzalez ML, Kumar P. et al. CAP37, a novel inflammatory mediator: its expression in endothelial cells and localization to atherosclerotic lesions. Am J Pathol 2002; 160: 841-848.
  • 76 Chertov O, Ueda H, Xu LL. et al. Identification of human neutrophil-derived cathepsin G and azurocidin/CAP37 as chemoattractants for mononuclear cells and neutrophils. J Exp Med 1997; 186: 739-747.
  • 77 Soehnlein O, Zernecke A, Eriksson EE. et al. Neutrophil secretion products pave the way for inflammatory monocytes. Blood 2008; 112: 1461-1471.
  • 78 Soehnlein O, Lindbom L, Weber C. Mechanisms underlying neutrophil-mediated monocyte recruitment. Blood 2009; 114: 4613-4623.
  • 79 Sun R, Iribarren P, Zhang N. et al. Identification of neutrophil granule protein cathepsin G as a novel chemotactic agonist for the G protein-coupled formyl peptide receptor. J Immunol 2004; 173: 428-436.
  • 80 Taekema-Roelvink ME, Kooten C, Kooij SV. et al. Proteinase 3 enhances endothelial monocyte chemoattractant protein-1 production and induces increased adhesion of neutrophils to endothelial cells by upregulating intercellular cell adhesion molecule-1. J Am Soc Nephrol 2001; 12: 932-940.
  • 81 Berahovich RD, Miao Z, Wang Y. et al. Proteolytic activation of alternative CCR1 ligands in inflammation. J Immunol 2005; 174: 7341-7351.
  • 82 Romano M, Sironi M, Toniatti C. et al. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 1997; 6: 315-325.
  • 83 Hurst SM, Wilkinson TS, McLoughlin RM. et al. Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 2001; 14: 705-714.
  • 84 Cybulsky MI, Iiyama K, Li H. et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 2001; 107: 1255-1262.
  • 85 Galkina E, Ley K. Leukocyte influx in atherosclerosis. Curr Drug Targets 2007; 8: 1239-1248.
  • 86 Liuzzo G, Goronzy JJ, Yang H. et al. Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation 2000; 101: 2883-2888.
  • 87 Abi Abdallah DS, Egan CE, Butcher BA. et al. Mouse neutrophils are professional antigen-presenting cells programmed to instruct Th1 and Th17 T-cell differentiation. Int Immunol 2011; 23: 317-326.
  • 88 Beauvillain C, Delneste Y, Scotet M. et al. Neutrophils efficiently cross-prime naive T cells in vivo. Blood 2007; 110: 2965-2973.
  • 89 Fanger NA, Liu C, Guyre PM. et al. Activation of human T cells by major histocompatability complex class II expressing neutrophils: proliferation in the presence of superantigen, but not tetanus toxoid. Blood 1997; 89: 4128-4135.
  • 90 Iking-Konert C, Ostendorf B, Sander O. et al. Transdifferentiation of polymorphonuclear neutrophils to dendritic-like cells at the site of inflammation in rheumatoid arthritis: evidence for activation by T cells. Ann Rheum Dis 2005; 64: 1436-1442.
  • 91 Culshaw S, Millington OR, Brewer JM. et al. Murine neutrophils present Class II restricted antigen. Immunol Lett 2008; 118: 49-54.
  • 92 Thewissen M, Damoiseaux J, van de Gaar J. et al. Neutrophils and T cells: Bidirectional effects and functional interferences. Mol Immunol 2011; 48: 2094-2101.
  • 93 Munder M, Schneider H, Luckner C. et al. Suppression of T-cell functions by human granulocyte arginase. Blood 2006; 108: 1627-1634.
  • 94 Klebanoff SJ, Olszowski S, Van Voorhis WC. et al. Effects of gamma-interferon on human neutrophils: protection from deterioration on storage. Blood 1992; 80: 225-234.
  • 95 Taleb S, Tedgui A, Mallat Z. Interleukin-17: friend or foe in atherosclerosis?. Curr Opin Lipidol 2010; 21: 404-408.
  • 96 Pelletier M, Maggi L, Micheletti A. et al. Evidence for a cross-talk between human neutrophils and Th17 cells. Blood 2010; 115: 335-343.
  • 97 Wang Z, Lee J, Zhang Y. et al. Increased Th17 cells in coronary artery disease are associated with neutrophilic inflammation. Scand Cardiovasc J 2011; 45: 54-61.
  • 98 Tani K, Murphy WJ, Chertov O. et al. The neutrophil granule protein cathepsin G activates murine T lymphocytes and upregulates antigen-specific IG production in mice. Biochem Biophys Res Comm 2001; 282: 971-976.
  • 99 Shortman K, Naik SH. Steady-state and inflammatory dendritic-cell development. Nature Rev Immunol 2007; 7: 19-30.
  • 100 Paulson KE, Zhu SN, Chen M. et al. Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis. Circulation Res 2010; 106: 383-390.
  • 101 Choi JH, Do Y, Cheong C. et al. Identification of antigen-presenting dendritic cells in mouse aorta and cardiac valves. J Exp Med 2009; 206: 497-505.
  • 102 Bobryshev YV. Dendritic cells and their role in atherogenesis. Lab Invest 2010; 90: 970-984.
  • 103 Tacke F, Alvarez D, Kaplan TJ. et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 2007; 117: 185-194.
  • 104 Millonig G, Niederegger H, Rabl W. et al. Network of vascular-associated dendritic cells in intima of healthy young individuals. Arterioscl Thromb Vasc Biol 2001; 21: 503-508.
  • 105 Bobryshev YV. Dendritic cells in atherosclerosis: current status of the problem and clinical relevance. Eur Heart J 2005; 26: 1700-1704.
  • 106 Zaguri R, Verbovetski I, Atallah M. et al. 'Danger' effect of low-density lipoprotein (LDL) and oxidized LDL on human immature dendritic cells. Clin Exp Immunol 2007; 149: 543-552.
  • 107 Alderman CJ, Bunyard PR, Chain BM. et al. Effects of oxidised low density lipoprotein on dendritic cells: a possible immunoregulatory component of the atherogenic micro-environment?. Cardiovasc Res 2002; 55: 806-819.
  • 108 Megiovanni AM, Sanchez F, Robledo-Sarmiento M. et al. Polymorphonuclear neutrophils deliver activation signals and antigenic molecules to dendritic cells: a new link between leukocytes upstream of T lymphocytes. J Leuk Biol 2006; 79: 977-988.
  • 109 Lande R, Gregorio J, Facchinetti V. et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 2007; 449: 564-569.
  • 110 Ganguly D, Chamilos G, Lande R. et al. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med 2009; 206: 1983-1994.
  • 111 Tian J, Avalos AM, Mao SY. et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nature Immunol 2007; 8: 487-496.
  • 112 Vermi W, Riboldi E, Wittamer V. et al. Role of ChemR23 in directing the migration of myeloid and plasmacytoid dendritic cells to lymphoid organs and inflamed skin. J Exp Med 2005; 201: 509-515.
  • 113 Wittamer V, Bondue B, Guillabert A. et al. Neutrophil-mediated maturation of chemerin: a link between innate and adaptive immunity. J Immunol 2005; 175: 487-493.
  • 114 Albanesi C, Scarponi C, Pallotta S, Daniele R, Bosisio D, Madonna S. et al. Chemerin expression marks early psoriatic skin lesions and correlates with plasmacytoid dendritic cell recruitment. J Exp Med 2009; 206: 249-258.
  • 115 Nakajima H, Nakajima K, Nagano Y. et al. Circulating level of chemerin is upregulated in psoriasis. J Dermatol Sci 2010; 60: 45-47.
  • 116 Dong B, Ji W, Zhang Y. Elevated serum chemerin levels are associated with the presence of coronary artery disease in patients with metabolic syndrome. Intern Med 2011; 50: 1093-1097.
  • 117 Yang D, Chen Q, Chertov O. et al. Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J Leukocyte Biol 2000; 68: 9-14.
  • 118 Quinn K, Henriques M, Parker T. et al. Human neutrophil peptides: a novel potential mediator of inflammatory cardiovascular diseases. Am J Physiol Heart Circ Physiol 2008; 295: H1817-1824.
  • 119 Lande R, Ganguly D, Facchinetti V. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med 2011; 3: 73-19.
  • 120 Garcia-Romo GS, Caielli S, Vega B. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med 2011; 3: 73-20.
  • 121 Kessenbrock K, Krumbholz M, Schonermarck U. et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nature Med 2009; 15: 623-625.