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Introduction

Patients with cancer are at increased risk to develop venous
thromboembolism (VTE), an association that is commonly
known as Trousseau’s syndrome.1,2 The clinical manifesta-
tions of cancer-associated VTE include deep vein thrombosis
and pulmonary embolism, as well as visceral or splanchnic
vein thrombosis.3 Indeed, cancer is one of the best-estab-
lished risk factors for VTE.4,5 It has been estimated that�20%
of all first VTE events are associated with cancer.5 According

to a recent U.K. cohort study that included 6,592 cancer-
associated VTEs, the incidence rate of first VTE in patients
with active cancer was 5.8 (95 % confidence interval [CI],
5.7–6.0) per 100 person-years and the overall incidence rate
for recurrence was 9.6 (95 % CI, 8.8–10.4) per 100 person-
years.6 Finally, cancer-associated thrombosis is linked with a
worse prognosis, and thromboembolism is the second lead-
ing cause of death in cancer.5

Several risk factors for VTE usually coexist in cancer
patients. These may include certain comorbidities, surgery,
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Abstract Cancer induces a systemic hypercoagulable state that elevates the baseline thrombotic
risk of affected patients. This hypercoagulable state reflects a complex interplay
between cancer cells and host cells and the coagulation system as part of the host
response to cancer. Although the tissue factor (TF)/factor VIIa pathway is proposed to
be the principal initiator of fibrin formation in cancer patients, clinical studies have not
shown a consistent relationship between circulating TF levels (often measured as
plasma microvesicle-associated TF) and the risk of thrombosis. A renewed interest in
the role of the contact pathway in thrombosis has evolved over the past decade, raising
the question of its role in the pathogenesis of thrombotic complications in cancer.
Recent observations have documented the presence of activation of the contact
system in gastrointestinal, lung, breast and prostate cancers. Although the assays used
to measure contact activation differ, and despite the absence of standardization of
methodologies, it is clear that both the intrinsic and extrinsic pathways may be
activated in cancer. This review will focus on recent findings concerning the role of
activation of the contact system in cancer-associated hypercoagulability and throm-
bosis. An improved understanding of the pathophysiology of these mechanisms may
lead to personalized antithrombotic protocols with improved efficacy and safety
compared with currently available therapies.
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immobility, tumour histology and stage, the presence of
indwelling central venous catheters and chemotherapy
and/or some molecular targeted therapies.6 These risk fac-
tors, which may be classified as patient-, tumour- or treat-
ment-related, may additively exceed the threshold for
clinically overt thrombosis (►Fig. 1).

Tissue factor (TF) is the physiologic activator of coagula-
tion in vivo.We and others have reported elevated levels of TF
in the circulation of animal models and in patients with
cancer.7,8However, although circulating levels of TF correlate
with mortality, it does not always correlate with markers of
systemic hypercoagulability, or the occurrence of thrombo-
sis.9–11 This suggests that other pathways modulate throm-
bogenesis in cancer. This review will focus on the
hypercoagulable state in cancer with particular reference
to recent findings concerning the potential contribution of
the contact system (CS) of coagulation.

The Contact System

FXII-Dependent Contact Activation
The CS refers to a proteolytic pathway consisting of the
zymogens factor XII (FXII) and prekallikrein (PK), and the
non-enzymatic cofactor, high molecular weight kininogen
(HK). Some definitions also include zymogen FXI. All com-
ponent proteins are synthesized and secreted by the

liver.12,13 Contact of plasmawith negatively charged surfaces
induces a conformational change in zymogen FXII resulting
in a small amount of auto-activated FXII (FXIIa;α-FXIIa),
which, in turn, cleaves PK to generate kallikrein (KAL). The
conformational change in FXII, together with reciprocal
activation of FXII by formed KAL and HK, leads to further
formation of FXIIa.12–15 The activation of FXII and PK gen-
erates a potent activation feedback loop that overcomes
inactivation of these enzymes by the principal CS inhibitor,
the serpin C1 esterase inhibitor (C1INH).16 The end result of
FXIIa generation may be activated FXI (FXIa) and/or vasoac-
tive and pro-inflammatory kinins, such as bradykinin (BK).
FXIa initiates a series of Ca2þ-dependent proteolytic events
that lead to thrombin generation, and production of a fibrin
clot. Following the initial generation of thrombin (by what-
ever mechanism), a powerful amplification mechanism
accelerates thrombin formation in a FXI-dependent man-
ner.16 Additionally, α-FXIIa can be further cleaved by KAL to
generate β-FXIIa, which retains the ability to activate PK, but
not FXI or FXII, and is able to dissociate from the surface
(contact phase).15,17,18 C1INH targets both FXIIa and KAL,
accounting for �93% of plasma FXIIa or β-FXIIa inhibition.
Furthermore, antithrombin, α2-macroglobulin and α2-anti-
plasmin also inhibit FXIIa to a lesser extent (►Fig. 2).19–24

Apart from glass surfaces, many other negatively charged
surfaces or polyanionic molecules, including silica, kaolin,
ellagic acid and sulphated polysaccharides, can accelerate
contact activation. Certain glycosaminoglycans (GAGs), such
as dermatan sulphate, chondroitin sulphate-E and heparin
can also initiate contact activation in vitro18 or in vivo.25

However, over the past decade, intensive research efforts
have focused on endogenous ‘natural activators’ of the CS.
Several damage-associated molecular entities have been
suggested to directly drive CS activation during vascular
injury and infection including extracellular nucleic acids,
misfolded aggregated proteins, mast cell heparin and
pathogen-related molecules, such as endotoxin. Addition-
ally, inorganic polyphosphate (polyP), a linear polymer of
orthophosphates that is present in many infectious micro-
organisms and is also secreted bymast cells and platelets, has
received the most attention. PolyP accelerates blood clotting
and slows fibrinolysis, in a manner that is highly dependent
on polymer length. Very long-chain polyP (found in many
bacteria) is an especially potent trigger of the contact path-
way,26–29 but aggregated shorter chain polyP in the form of
Ca2þ-dependent nanoparticles may also activate FXII.30

Recently, it was demonstrated that membrane-associated
platelet polyphosphate condensed into insoluble spherical
nanoparticles on the surface of activated platelets potently
activates factor XII.31 Finally, extravascular matrix proteins
such as laminin and collagen are capable of assembling
and activating the CS to drive coagulation under flow
conditions.32

The FXII-Independent Activation Pathway
An alternate activation mechanism of the CS, independent of
FXII, but involving Zn2þ- and HK-dependent PK activation on
endothelial cells, has been described. It has been observed that

Fig. 1 Longitudinal risk of thrombosis in a patient with cancer. Normal
individualsmaintain a haemostatic equilibriumwhereas cancer patients are
typically in a pre-thrombotic state, and at risk of developing overt throm-
bosis. The coloured line represents the level of thrombotic risk in a cancer
patient following diagnosis as (s)he progresses through various therapeutic
interventions that may increase or decrease the basal thrombotic risk
induced by the cancer. Thus, the patient may initially receive short-term
thromboprophylaxis, which temporally lowers the risk of thrombosis. (S)he
may then begin neoadjuvant radiation and/or chemotherapy, leading to an
increased risk of thrombosis. When (s)he then undergoes surgery and is
immobilized for several days, (s)he crosses the thrombotic threshold and
develops a clinically overt thrombotic event. The risk of thrombotic
recurrence remains high despite anticoagulation therapy.
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KAL activity is generated in FXII-deficient, but not in
PK-deficient plasma when HK-PK complexes assemble on
the surface of endothelial cells, and HK serves as both the
binding site and cofactor for PK activation.33 In this model, a
limited amount of KAL is generated in a FXII-independent
manner and is subsequently amplified in a FXII-dependent
manner. Moreover, KAL generated on the cell surface then
cleaves HK, liberating itself from the complex with HK (its
captor and native substrate) and thereby generating BK. Dis-
tinct from the FXII-dependent pathway, the alternative path-
way isbelieved tooccurconstitutively invivoand is responsible
forbasalBKformation.13,18,32,33Twoproteinswereproposedto
provide the enzymatic impulse for PK activation: both heat
shock protein 90 (Hsp90) and the serine enzyme prolylcarbox-
ypeptidase (PRCP) on the surface of endothelial cells have been
identified as physiological activators of the KAL/kinin sys-
tem.18,34,35 Hsp90 and PRCP can activate the PK–HK complex
in the absence of FXII but in the presence of Zn2þ. Notably,
HSP90 is very abundant in almost all cell types (2–3% of total
cellular proteins) and can be evenmore abundantly expressed
by tumour cells (up to 7%of total protein).32,36Moreover, it has
been reported that PK can be auto-catalytically cleaved byKAL,
in the presence of certain negatively charged surfaces.37 As for
membrane-mediated activation, apart from endothelial cells,
the surfaces of some exogenous microorganisms can also
assemble and activate the KAL/kinin system (e.g. the surface
of Gram-negative bacteria).38

Measuring Activation of the Contact System
in Plasma

Investigation of CS activity can be broadly defined as meth-
ods that address the potential for exogenous activation, and
those that focus on analysis of in vivo activation. Tools such as
clotting assays or substrate cleavage can be used to assess a
patient’s capacity for CS activation using known initiators, as
well as discovery of novel putative physiological activators.
Evidence for in vivo activation is predominantly assayed via
enzyme-linked immunosorbent assay (ELISA), though Wes-
tern blot and mass spectrometry have seen specialized use.
The most common criticisms applied to these assays are the
short half-life of the complexes and the potential for ex vivo
activation during collection. Minimization of pre-analytical
activation through use of benzamidines or specific CS inhi-
bitors with blood collection39 is critical and should be
considered in study design, since FXII may be rapidly acti-
vated ex vivo by contact with blood drawing equipment.40,41

To our knowledge, there are currently no clinically standar-
dized assays to quantify in vivo activation of the CS, present-
ing an unmet need in cancer-associated thrombosis research.

Clotting Assays
The activated partial thromboplastin time assay (aPTT) uses
an anionic surface to activate FXII following the addition of
phospholipid and calcium. Shortened aPTT times (probably
driven primarily by elevated FVIII levels) have been linked to
an elevated risk of thrombosis, although not specifically in
cohorts with cancer.42 One-stage clotting assays based on
aPTTusing deficient plasmamay be used to detect FXI and XII
activity. A reduction in plasma FXII activity has been
regarded as a marker of consumption and, thus, indirect
evidence of activation of the CS.43 However, given the global
nature of the aPTT-based tests, more specific assays are
required to probe the role of the contact pathway in disease
states, including cancer-associated thrombosis.

Substrate Cleavage/Chromogenic Assays
Factors XIIa, XIa and KAL are serine proteases and their
enzymatic function can be assessed by cleavage of synthetic
peptides to generate a chromogenic or fluorogenic signal.
Themost commonly used substrate is S-2302 (H-D-Pro-Phe-
Arg-pNA), which is sensitive to cleavage by FXIIa and KAL
(with a nearly identical Km and Kcat), and to a much lesser
extent, FXIa. This substratemimics the last three amino acids
in the BK sequence of kininogen, and may therefore be used
to address the role of FXIIa and KAL in liberation of BK from
HK. These substrates may be used to assay the activation of
potential initiators of the CS in plasma, as demonstrated in a
recent report describing prostatic tumour cell-derived exo-
somes (prostasomes).44 However, detection of in vivo active
enzymes using substrates is not practical nor quantifiable.
Furthermore, the cross-reactivity of currently available sub-
strates is problematic; although several more specific sub-
strates for CS enzymes have been developed, the use of
specific enzyme inhibitors to minimize the possibility of
cross-reactivity should be considered. For example, corn

Fig. 2 Inhibitors of the contact system in plasma. The relative
contributions of inhibitors of factors XIIa (FXIIa), XIa (FXIa) and
kallikrein (KAL) in plasma (in the absence of heparin) is illustrated.
FXIIa is predominantly complexed with C1 inhibitor, which typically
accounts for > 90% of inhibition.20 FXIa is inhibited by α1-antitrypsin
(�39%), C1 inhibitor (28%), α2-antiplasmin (28%) and anti-thrombin
(5%). However, the addition of heparin greatly increases the contri-
bution of antithrombin in FXIa inactivation (�35% of complexes).21 C1
inhibitor (55%) and α2-macroglobulin (37%) are the primary inhibitors
of KAL, though they have been demonstrated to have different
inhibitory rates as well as different clearance rates.22–24
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trypsin inhibitor (CTI) or soybean trypsin inhibitor (STI) may
be added to sodium citrate before blood collection to inhibit
FXIIa or KAL, respectively.45,46 Similarly, ethylenediaminete-
traacetic acid (EDTA) will chelate zinc,47 a required cation in
the contact pathway,48 and thus collection of samples in
citrate is preferred.

ELISA
One of the earliest reports identifying the role of the CS in
cancer used capture ELISA to quantify CS proteins in a
cohort of gastrointestinal cancer patients.49 Depending on
the targeted epitopes, these assays may not be able to
distinguish between zymogen, enzyme or inhibited protein.
However, combining this approach with evidence of
reduced zymogen activity indicates prior CS activation.
ELISAs able to distinguish activation states offer a greater
benefit when analysing clinical samples. Originally devel-
oped as radioimmunoassays,50 these assays have been
modified to ELISA formats that detect CS proteins bound
to their physiologic inhibitors including C1-inhibitor ester-
ase (C1INH), α1-antitrypsin, antithrombin, α2-antiplasmin
and α2-macroglobulin (►Fig. 2). ELISAs for enzyme-inhibi-
tor complexes have been used in various disease states,
although not in the setting of cancer-associated thrombosis,
to our knowledge (►Fig. 2).51 Certain reports concluded
that circulating complexes do not correlate with disease
activity, because of their short half-life.52 However, the half-
lives of these complexes are estimated in the range of 30 to
50 minutes,53 which can still detect chronic CS activation. By
analogy, thrombin-antithrombin (TAT) complexes have a half-
life of�15minutes inplasma, yet are an acceptedbiomarker of
on-going coagulation activation in vivo.54 Indeed, investiga-
tions in patients with endotoxaemia, myocardial infarction
and amyloidosis have revealedmeasurable changes in contact
activation using CS enzyme-inhibitor complexes.39,51,55,56

More recently, heavy chain-only nanobodies specific for FXIIa
have been used to distinguish not only between the activation
states of FXII, but also between theα and β isoforms.57 Finally,
HK can be cleaved by either FXIIa or KAL to release HK
fragments. An ELISA has been developed to detect cleaved
HK in plasma as a marker of CS activation (via KAL) due to its
longer half-life (�9 hours),58 but has yet to be applied to
cancer-associated thrombosis research.

Western Blot
An alternative approach for detecting activation of the CS
activation in plasma is Western blotting. Here, detection of
enzyme-inhibitor complexes or cleavage of HK (an indirect
measurement of BK release) provide a semi-quantitative
measurement of CS activation.59 Western blotting can offer
advantages such as the speciation of FXIIa (α or β) when
analysed under reducing conditions, or complexes with
inhibitors under non-reducing conditions, without using
specificmonoclonal antibodies or the aforementioned nano-
bodies.60 Detection of heavy chain-only HK by Western
blotting has shown sensitivity to concentrations as low as
5 ng/mL,61 with discernible differences in the plasma of
rodent models of BK-mediated diseases.62 However, due to

the low throughput of Western blotting, clinical samples are
not typically analysed using this approach.

Mass Spectrometry
The major inflammatory effector of the CS is BK, a 9 amino
acid peptide generated from the cleavage of HK by KAL.
Detection of BK versus FXIa (or FXIa-inhibitor complex)
provides a potentially valuable measurement of the inflam-
matory versus procoagulant endpoints of CS activation.
Unfortunately, BK has a circulating half-life < 20 seconds63

due to its rapid metabolism by angiotensin-converting
enzyme I (ACE) in the lungs, which greatly limits its detection
when it is generated in vivo. However, mass spectrometry
may be used to quantify the major stable metabolite, BK
1–5.64 Given the role of BK in tumour progression,65,66 and
evidence for thrombotic protection in mice deficient in the
BK2 receptor,64 this underutilized approach should be con-
sidered in the evaluation of clinical samples.

Clinical Evidence of Contact System
Activation in Cancer

As alreadymentioned, earlyevidenceofCSactivation in cancer
was presented in 1990.49 CS activation was evaluated in 69
patients with gastrointestinal cancer (12with gastric, 15with
pancreatic and 42 with colon cancer), 33 of who had liver
metastases, and in 118 healthy controls recruited from blood
donors (►Table 1). Antigen levels of FXII, PK, HK and C1INH
were measured by immunochemical assays; activity levels of
PK and C1INH were measured by chromogenic assays. Values
of FXII, PK, HK and C1INH were expressed as a percentage of
human standard plasma pool values. FXII, PK and HK antigens
were decreased in patients with gastrointestinal cancer
(84 � 28%, 74 � 19% and 86 � 14%, respectively) compared
with the control group (94 � 27%, 88 � 18% and 98 � 14%,
respectively), but only PK and HK values were statistically
different (p < 0.05 for both). PK activity was significantly
decreased compared with controls (74 � 21% vs. 101 � 17%,
p < 0.05). C1INH antigen and activity were significantly
increased in cancer compared with controls (p < 0.05 for
both comparisons). Interestingly, in the subgroup of patients
with metastatic colon cancer, FXII, PK and HK levels were
significantly decreased (78 � 18%, 75 � 13% and 77 � 9%,
respectively) compared with controls (all p < 0.05). C1INH
was significantly increased both in patients with and without
metastases comparedwith controls in both the immunological
and functional assays (p < 0.05). The authors concluded that
patientswith intestinal cancermanifest reduced contact factor
levels with markedly elevated inhibitor levels. Battistelli et al
measuredplasmaactivities offibrinogen, FII, FV, FVII, FVIII, FIX,
FX, FXI and FXII in 73 patients with non-metastatic colorectal
cancer (48 colon and 25 rectum) and in 67matched controls.43

They showed that the mean plasma activity of fibrinogen
(400 � 113 mg/dL), FVIII (145 � 50%), FIX (127 � 29%) and
FV (131 � 65%) were significantly higher in colorectal cancer
patients than in control subjects (287 � 74 mg/dL, 92 � 35%,
109 � 22% and 108 � 35%, respectively), while FVII
(102 � 25% vs. 118 � 34%, p ¼ 0.004) and FXII (96 � 26% vs.
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113 � 3%, p ¼ 0.003) levels were significantly decreased.
Interestingly, FVII was highly correlated with FXII (p < 0.01)
only in cancer patients. The authors concluded that decreased
FVII and FXII activity may be indices of intravascular coagula-
tion activation in colorectal cancer. More recently, Pan et al67

measured CS activation in 10 lung cancer patient plasmas
compared with normal pooled plasma. PK, HK and C1INH
were quantified by Western blot. The authors concluded that
CS activation was present, as evidenced by cleaved C1INH and
C1INH/protease complex in all 10 patients,with absentHK in 9
patients, decreased amounts of PK in 6 and KAL/protease
complex in 5. Moreover, the authors confirmed the same CS
activationpattern in11colon, 9 breast, 3 pancreatic and1 renal
cancer patients. In particular, all of the pancreatic cancer
patient samples showed an absence of detectable HK, whereas
onlyone of the colon cancer plasmas had undetectableHK, and
this occurred in a patient with stage IV disease (►Table 1).

Mechanisms of Contact System Activation in
Cancer

Although several observations documenting activation of the
CS in different cancers have been published, the responsible
mechanism(s) is poorly understood. As previously men-
tioned, the variety of assays that have been used makes it

difficult to compare results. ►Table 2 summarizes the
reported mechanisms of CS activation in cancer.

Microvesicles
Microvesicles (MVs) are submicron, lipid bilayer membrane
particles, shed by various cells upon activation or apoptosis.
Our group and others have described elevated levels of
circulating MVs, including exosomes (MVs of 50–100 nm
in diameter) derived from tumour and host blood cells types
in cancer patients.68–71 Cancer chemotherapy canpotentially
induceMV release from tumour, blood or endothelial cells.72

Red cell and platelet transfusions administered to cancer
patients are additional sources of MVs. MVs and exosomes
may play a major role in tumourigenesis, tumour progres-
sion,metastasis and cancer-associated thrombosis.68–71,73,74

As already mentioned, the prothrombotic role of MVs has
been mainly ascribed to TF-bearing MVs.69,70,75,76 However,
in a cohort of women with breast cancer, circulating
annexin-V positive MVs were elevated and correlated with
the stage of the tumour. When analysed according to cellular
origin, platelet-derived MVs represented the vast majority
(> 80%); their level correlated with plasma levels of pro-
thrombin fragment 1.2, suggesting a role in systemic hyper-
coagulability.9 In this study, TF-MV levels were very low and
not different from that of women with benign breast

Table 1 Studies of contact system activation in patients with cancer

Patients Patients/
controls

Cancer subtype Analytes Main results Ref

69 gastrointest-
inal cancer
(33 with liver
metastasis)

69/118 12 gastric
15 pancreatic
42 colon

FXII, PK, HK, C1INH
immunological and
functional assays

1. FXII, PK and HK
activity decreased
2. C1INH increased
3. CS activation more
pronounced in patients
with liver metastasis

49

73 colorectal
cancer without
metastasis

73/67 48 colon
25 rectum

Fibrinogen, FII, FV, FVII,
FVIII, FIX, FX, FXI, FXII
activity

1. FVII and FXII activity
decreased
2. FVII highly correlated
with FXII

43

34 cancer
(11 advanced
disease)

34/NPP 10 lung
11 colon
9 breast
3 pancreatic
1 renal

PK, KAL/protease com-
plexes, HK, C1INH and
C1INH/protease com-
plexes by Western
analysis

1. Cleaved C1INH and
C1INH/protease com-
plexes, absence of HK,
decreased amounts of
PK, and KAL/protease
complexes (primarily in
lung cancer patients)
2. Thrombin generation
correlated with KAL/
protease complexes

67

20 prostate
cancer

20/20 20 prostate FXIIa activity, thrombin
generation

Humanized antibody
3F7 inhibited FXIIa
activity and reduced
thrombin generation in
normal plasma samples
spiked with prosta-
somes from pancreatic
cancer patients

44

Abbreviations: C1INH, C1esterase inhibitor; FXII, factor XII; HK, high molecular weight kininogen; KAL, kallikrein; NPP, normal pool plasma; PK,
prekallikrein; TF, tissue factor.
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tumours, although the correlation with prothrombin frag-
ment was seen only in patients with metastatic cancer.9 Red
blood cell and platelet-derived MVs have previously been
shown to activate coagulation through the contact pathway
in the context of blood product storage and human endotox-
aemia, although here again, the precise molecular trigger for
this event remains to be determined.77–79 In addition to
blood cell-derived MVs, certain tumour-derived exosomes
have also been shown to interact with the CS. Exosomes
spontaneously released or induced by treatment of the B16
melanoma cell line with doxorubicin in vitro, triggered
thrombin and fibrin generation in plasma in the presence
of inhibitory TF antibodies.80 In a mouse model of breast
cancer, tumour-derived exosomes cooperated with neutro-
phils primed by tumour-derived G-CSF to generate NETs and
enhance thrombosis (further discussed below).81 Addition-
ally, exosomes secreted by prostate cancer cells (prosta-
somes) trigger thrombin generation in vitro in a dose-
dependent manner, and induce lethal pulmonary embolism
in mice.44 Moreover, the addition of a recombinant FXIIa
inhibitor significantly reduced peak and total thrombin
generated by prostasomes, and the combined application

of FXIIa and TF inhibitors completely blunted thrombin
generation. Polyphosphates were found on the surface of
prostasomes. Treatment of prostasomes with specific inhi-
bitors of polyphosphates or with polyphosphate degrading
enzymes abrogated prostasome-induced FXIIa generation in
vitro and protected mice from prostasome-induced lethal
pulmonary embolism. However, since similar effects were
also observed following inhibition of TF, both the intrinsic
and extrinsic pathways seemed to contribute to thrombosis
in this model. Further data are required in a diverse range of
cancers to understand the role that circulating exosomes/
MVs may play in CS activation.

Cell-Free DNA, Histones and Neutrophil Extracellular
Traps
Elevated circulating levels of cell-free DNA (cfDNA) and
histones, the major molecular components in nucleo-
somes/chromatin, are found in cancer patients. They are
associated with adverse outcomes and are positively corre-
lated with markers of in vivo coagulation activation such as
plasma TAT and D-dimer levels.82–85 The mechanisms of
extracellular release and the cellular origin of cfDNA and

Table 2 Major proposed mechanisms of contact activation in cancer

Cancer type Mechanism suggested Ref

Gastrointestinal with or without
liver metastasis; no VTE

1. Proteolytic enzymes such as plasmin, collagenase and
cathepsin

2. Kallikrein produced by cancer cells
3. Imbalance of CS linked with metastatic process

49

Colorectal without metastasis; no VTE Intravascular coagulation activation mediated by both
extrinsic and intrinsic pathways

43

Miscellaneous 1. High levels of MVs
2. Prothrombotic role mainly ascribed to TF-bearing MVs
3. Red blood cell and platelet-derived MVs have been shown

to activate CS

69,70,75,76

Melanoma cell line Exosomes spontaneously released or induced by treatment
with doxorubicin triggered thrombin generation even in the
presence of inhibitory TF antibodies

80

Prostate cancer 1. Prostasomes secreted by prostate cancer cells activated
intrinsic pathway via PolyP

2. Blocking FXIIa reduced the prothrombotic potential of
prostasomes

44

Acute myeloid leukaemia Increased levels of cell-free plasma DNA indicative of con-
tribution of the contact pathway to systemic coagulation
activation in the total patient cohort and in patients with
lower TF procoagulant activity

85

Breast cancer Cell-free DNA released from epirubicin-treated whole blood
significantly elevated thrombin generation in a dose-
dependent manner via activation of the contact pathway

95

Miscellaneous 1. Increased plasma H3Cit in active cancer with stroke
compared with stroke without cancer

2. H3Cit positively correlated with plasma TAT

102

Miscellaneous 1. High GAGs (glucosamine and galactosamine) levels
expressed by tumoural tissue (mainly lung) or by
endothelial cells may activate CS

2. Carcinoma mucins may induce CS activation

67

Abbreviations: CS, contact system; F, factor; GAGs, glycosaminoglycans; H3Cit, citrullinated histone H3; MVs, microvesicles; PolyP, polyphosphate;
TAT, thrombin-antithrombin complexes; TF, tissue factor; VTE, venous thromboembolism.
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histones are unclear, and probably vary according to
tumour type, patient co-morbidities and chemotherapy.
In cancer patients, cfDNA may be either tumour-derived
or released from apoptotic or necrotic non-tumoural tis-
sues, such as neutrophils.86 Cancer chemotherapy is asso-
ciated with increased plasma levels of cfDNA.87–89 Multiple
groups, including our own, have reported FXII-dependent
procoagulant activity of purified DNA in vitro.90–94 Speci-
fically, Swystun et al95 showed that cfDNA purified from
epirubicin-treated whole blood ex vivo significantly ele-
vated thrombin generation in a dose-dependent manner by
a mechanism involving activation of the contact pathway.
Purified histones promote platelet activation and aggrega-
tion, and trigger thrombin generation in a platelet-depen-
dent manner.96,97 They also induce phosphatidylserine
expression on red blood cells and impair thrombomodu-
lin-dependent protein C activation, leading to enhanced
thrombin generation in plasma ex vivo.98,99 Noteworthy,
it is unclear if DNA and histones circulate in their free forms.
It is also unknown if DNA or histones bound to other blood
components affect their respective procoagulant activities
observed in vitro.

Cancer cells secrete various types of cytokines that
modify neutrophil biology, leading to changes in neutrophil
counts and state of activation, including the release of
neutrophil extracellular traps (NETs).81,100,101 Animal mod-
els have suggested that NETosis plays a major role in cancer-
associated thrombosis. In a mouse model of mammary
carcinoma, tumour-bearing mice developed a leukaemoid
reaction and spontaneous delayed onset thrombosis within
the lungs. Interestingly, the percentage of circulating hyper-
citrullinated neutrophils increased at day 21 post-tumour
injection and decreased at the time that thrombosis
occurred. Furthermore, the disappearance of hypercitrulli-
nated neutrophils from the circulation coincided with the
appearance of hypercitrullinated histone H3 (H3Cit) in the
plasma of these mice.101 Hypercitrullination of histones,
which is believed to be mediated by neutrophil PADI4
enzyme, has been proposed to be a specific marker of
NETosis. Hence, the observations in this model were
thought to indicate a major role of tumour-induced NETs
in cancer-associated thrombosis. In another study, ortho-
topic injection of the same cancer cell line into mice led to
rapid development of metastases. Tumour-bearing mice
exhibited a reduced time to jugular vein occlusion during
venous thrombosis induced by Rose Bengal/laser photoche-
mical injury compared with control mice, as well as reduc-
tion in time to arterial occlusion triggered in the carotid
artery by ferric chloride injury. Pre-treatment of mice with
DNAse 1 abolished the differences between tumour-bearing
and control mice during both venous and arterial throm-
bosis challenges, further suggesting a role of NETs in these
models of cancer-associated thrombosis.81 In humans, Thå-
lin et al reported a significantly higher level of plasma H3Cit
in patients with active cancer and stroke than in patients
with stroke without active cancer. In this study, plasma
level of H3Cit positively correlated with plasma TAT, sup-
porting a possible link between NETosis and cancer-asso-

ciated thrombosis.102 However, the mechanisms by which
NETs promote thrombosis are not fully understood and are
likely multifactorial. NETs released intravascularly adhere to
the vessel wall, where they resist flow and trap suspended
and soluble components of the blood, including those of the
clotting system.90,96,103,104 In this way, NETs facilitate inter-
actions between coagulation components, enhance throm-
bin generation and increase thrombus size. These
prothrombotic properties can be abrogated by preventing
NET formation or by dismantling the NET scaffold, using
DNAse 1, for example.81,104 However, whether the intact
NET macromolecular structure directly activates coagula-
tion is controversial. In cancer, MVs, activated leucocytes
and/or cancer cells themselves can provide circulating TF,
which are trapped on NETs. Neutrophil elastase, an enzyme
abundant in neutrophil cytoplasmic granules and in
extruded NETs, has been shown to enhance thrombosis
by inhibiting TF pathway inhibitor.105 Deficiency in FXII
does not confer protection from thrombus formation in
NET-dependent animal models of thrombosis.106 Several
studies have reported CS activation using thrombin gen-
eration in platelet-poor plasma containing NETs generated
ex vivo.90,91,107 However, in the presence of intact NETs, we
did not observe any thrombin generation in platelet-free
plasma, or in a purified CS reconstituted in buffer.92

Activated Platelets
There is an extensive literature on the multiple roles of
activated platelets in cancer-associated thrombosis.108 Acti-
vation of the CS by activated platelets has been observed
since the early 1980s.109 Activated platelets can expose
membrane-bound divalent ion-complexed polyphosphate
nanoparticles, which resist circulating polyphosphatases
and trigger FXII activation.31 Released platelet polypho-
sphates have also been reported to activate the CS in vitro
and in vivo.28,110 A recent study by Riedl et al demonstrated
platelet activation mediated by expression of podoplanin by
brain tumours,111 likely through CLEC-2 signalling.112 How-
ever, whether tumour-podoplanin-CLEC-2-mediated plate-
let axis promotes thrombosis through CS activation has not
been evaluated.

Glycosaminoglycans
At amolecular level, certain GAG species have been shown to
activate FXII and the KAL-kinin pathway, with adverse
clinical outcomes; the most notable example was when
heparin batches contaminated by hypersulphated chondroi-
tin sulphate moieties were inadvertently administered to
patients.25 Whether tumour cells can similarly produce
atypical GAGs that activate the CS is unclear. Pan et al
measured levels of glucosamine- and galactosamine-con-
taining glycans as a putative mechanism for CS activation in
cancer patients.67 Galactosamine levels were increased in
lung cancer but not in breast or pancreatic cancer patients
compared with controls; on the other hand, glucosamine
levels were increased in both lung and breast cancer patients
compared with controls, although this was not observed in
pancreatic cancer (►Table 2).
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Catheter-Related Thrombosis
The use of venous catheters to facilitate chemotherapy,
transfusions, parenteral nutrition and blood sampling is
common in cancer patients. Up to 66 and 50% of patients
with cancer and indwelling catheters develop insertion site
thrombosis or pulmonary embolism, respectively.113,114

Reported risk factors for catheter-related thrombosis (CRT)
in cancer patients include left-sided or superior vena cava
insertion, chest radiotherapy,metastasis and elevatedhomo-
cysteine levels.115 The mechanisms by which catheters pro-
mote thrombosis are incompletely understood. Vessel injury
and stasis caused by catheter insertion, cancer-induced
‘hypercoagulability’ and other comorbidities can all contri-
bute to thrombosis.115 Additionally, materials used to con-
struct medical devices are inherently procoagulant to a
greater or lesser extent. In contrast to the healthy endothe-
lium, which actively resists thrombosis, artificial surfaces
promote clotting through a complex series of interconnected
processes that include protein adsorption and platelet and
leukocyte adhesion and activation that ultimately leads to
fibrin formation.116 CS proteins including FXII, PK, HK and
FXI adsorb to artificial surfaces,117 and catheter segments
shorten clotting times when introduced in re-calcified
plasma ex vivo. This procoagulant effect is attenuated in
the presence of CTI, and is abolished in FXII- or FXI-deficient
plasma, indicating that clotting is mediated by CS activa-
tion.118 Furthermore, contact of whole blood with some
materials used to manufacture medical devices induces TF
expression on monocytes and TF-dependent shortening of
clotting time ex vivo.117 Since monocytes adhere to catheter
surfaces, it is therefore possible that activation of the extrin-
sic pathway also contributes to CRT. While the relative
contribution of the intrinsic versus the extrinsic pathway
is unknown, one can speculate that these two pathways act
synergistically to promote CRT, especially in the context of
cancer where circulating TF is likely to be present.119,120

Therapeutic Implications of Contact System
Activation in Cancer

Current practice recommends the use of heparins for the
treatment and prophylaxis of VTE, as well as the treatment
of symptomatic CRT in patients with cancer.121 These
treatments are associated with bleeding side effects, which
can be of major concern in patients with chemotherapy-
induced thrombocytopenia, and in certain cancer types
associated with a high risk of bleeding. The use of antic-
oagulation for routine prophylaxis of CRT is not recom-
mended, as it largely fails to prevent CRT occurrence.115

Additionally, manufacturing catheters using biomaterials
that are less thrombogenic would help to further reduce
the incidence of CRT. Indeed, coating catheters with poly-
ethylene glycol and CTI reduced protein adhesion, the
ability to trigger FXII-dependent coagulation activation in
plasma and a 2.5-fold prolongation of time to occlusion
when inserted in the jugular vein of rabbits.119,122 Other
coating compounds, including heparins, direct thrombin
inhibitors and thrombomodulin, have shown promising

results in reducing the thrombogenicity of materials used
to make medical devices in vitro, though available data in
vivo are limited.116 Interestingly, it seems that anticoagu-
lant agents that target serine proteases of the common
pathway (FXa and thrombin) have limited capacity to
prevent medical device-induced thrombosis in vivo and
ex vivo.118,123 It has been postulated that medical device-
driven CS activation generates FXa and thrombin in con-
centrations that overcome the inhibition by therapeutic
doses of FXa and thrombin inhibitors.116 Using agents
that inhibit CS activation might provide more efficient
anticoagulation. However, further studies are required to
evaluate the use of CS inhibitors for the prevention of
medical device-induced thrombosis in clinical settings.

Although more evidence from basic, translational and
clinical research is required, the potential contribution of CS
activation in non-CRT thrombosis in cancer opens the door
to novel therapeutic possibilities. Inhibition of the CS may
protect against thrombosis without increasing the risk of
bleeding, as previously shown by genetic or pharmacologic
inhibition of FXIIa in animals.124 Several classes of CS
inhibitors are under development as thromboprotective
and/or anti-inflammatory agents125–147 (►Table 3). Most
of these agents have shown ability to inhibit CS in vitro or in
experimental models of thrombosis in animals without
cancer. Conceptually, targeting FXII or FXIIa would be
reasonable in settings where CS activation is the dominant
mechanism of coagulation activation. As mentioned above,
circulating TF is present in many cancers. TF is very efficient
at initiating coagulation, but is also efficiently inhibited by
TFPI.148 Thrombus formation then relies on the contribution
of the intrinsic pathway for subsequent thrombin genera-
tion. This can be achieved by FXIIa formation that will
then activate FXI, or by the feedback activation of FXI by
thrombin. Consequently, FXI or FXIa are good targets to
interrupt the additive or synergistic effects of activation of
both the extrinsic and intrinsic pathways. Moreover, such
an approach seems to represent a reasonable compromise
between preventing thrombosis with a lower risk of bleed-
ing compared with commonly used heparins. For instance,
reducing plasma FXI to 20% of normal levels using an
antisense oligonucleotide (ASO ISIS-416858) was more
effective than low molecular weight heparin in preventing
VTE following knee replacement surgery, without any
increase in intraoperative or postoperative bleed-
ing.126,143,144 To date, no clinical trial has evaluated thera-
pies targeting FXI/XIa to prevent thrombosis in the context
of cancer.

Systemic administration of DNAse confers protection
against experimental models of cancer-associated throm-
bosis.81 Thus, DNAse I represents a potential candidate for
the prevention or treatment of thrombosis, as it does
not directly affect haemostasis. However, convincing evi-
dence supporting the contribution of NETs to human
thrombosis, and clinical experience with systemic admin-
istration of DNAse I in humans are lacking, although
recombinant DNAse I aerosol is used in humans with
cystic fibrosis.147
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Conclusion

Increasing interest in the contact pathway of coagulation has
focused on a possible role in the pathogenesis of thrombosis.
Preliminary observations have noted the presence of activa-
tion of the CS in gastrointestinal, lung, breast and prostate
cancers. However, assays used to measure CS activation
differed among studies. A standardized approach that would
best quantify in vivo CS activation in clinical samples has yet
to be developed. Several candidates that are known to
activate the CS in vitro are found in the circulation of patients
with cancer. However, further research is needed to establish
what biological surfaces or molecular component(s) pro-
mote CS activation in human cancer. It is possible that the
surface varies with the type of tumour. For instance, poly-
phosphate-bearing prostasomes seem to be a candidate in

prostate cancer. More studies are required to understand if
the type, stage, grade and treatment of cancer modulate CS
activation. Although NETosis appears to play a role in cancer-
associated thrombosis in animals, it remains unclear if this
effect is due to direct CS activation. As TF is up-regulated in
many cancers, it seems reasonable to propose that conco-
mitant activation of both the intrinsic and extrinsic path-
ways acts synergistically to produce a highly prothrombotic
state in cancer (►Fig. 3). It is tempting to speculate that while
TF is the primary initiator, CS activation contributes to the
amplification of thrombin generation. Future research
should focus primarily on the standardization of methods
to measure CS in clinical samples. This advance would
further our understanding of the mechanisms by which CS
activation contributes to non-CRT in humans. For CRTwhere
CS activation is thought to play a major role, novel

Fig. 3 Molecular activators of coagulation in cancer. Coagulation activation in cancer-associated thrombosis may be explained by contributions
from both the tissue factor (‘extrinsic’) and FXII/FXI-dependent (‘intrinsic’) pathways. Tissue factor–bearing microvesicles may be released into
the circulation by various tumour types and promote thrombin generation and ultimately thrombosis. FXII may be activated in vivo by a variety
of negatively chargedmolecules. These could include phosphatidylserine (e.g. onmicrovesicles), glycosaminoglycans, polyphosphate, collagen,
nucleic acids and misfolded proteins. Activation of the contact system in cancer would promote the generation of thrombin, thereby
exacerbating thrombotic risk.
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therapeutic options targeting contact pathways should be
evaluated in well-designed clinical trials.
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