Phlebologie 2013; 42(03): 131-138
DOI: 10.12687/phleb2135-3-2013
Originalarbeit
Schattauer GmbH

Endovenous Laser Application

Possibilities of online monitoringEndovenöse LasertherapieMöglichkeiten zum online-Monitoring
R. Sroka
1   Laser-Forschungslabor, LIFE-Centre, Univ. Hospital of Munich, Germany
,
M. Hemmerich
1   Laser-Forschungslabor, LIFE-Centre, Univ. Hospital of Munich, Germany
,
T. Pongratz
1   Laser-Forschungslabor, LIFE-Centre, Univ. Hospital of Munich, Germany
,
K. Siegrist
1   Laser-Forschungslabor, LIFE-Centre, Univ. Hospital of Munich, Germany
,
J. Brons
1   Laser-Forschungslabor, LIFE-Centre, Univ. Hospital of Munich, Germany
,
S. Linden
1   Laser-Forschungslabor, LIFE-Centre, Univ. Hospital of Munich, Germany
,
R. Meier
1   Laser-Forschungslabor, LIFE-Centre, Univ. Hospital of Munich, Germany
,
C.-G. Schmedt
2   Diakonie-Klinikum Schwäbisch Hall gGmbH, Germany
› Author Affiliations
Further Information

Publication History

Received: 22 February 2013

Accepted: 23 May 2013

Publication Date:
04 January 2018 (online)

Summary

Introduction: Endovenous laser ablation is becoming a common procedure in clinical routine. Although technical improvements and certain laser parameters are available there is demand to improve the situation by developing feedback-systems, thus getting online information for the clinical outcome and preventing for under- and over-treatment.

Methods: By means of Monte Carlo simulation the potential of detecting signals due to heat induced shrinkage of the vessel was investigated. Remission spectra of native and coagulated vein tissue were compared to identify potential parameters for signalling the physiological change of the tissue due to the heating process. A miniaturized temperature sensor was developed for intraluminal measurements during laser energy application.

Results: Monte Carlo simulation shows that the detection of remitted light from the vessels wall is possible for small vessel calibres of less than 6 mm in diameter. Remission spectra of native compared to coagulated vein tissue differ. While native tissue relates more to the content of deoxy-hemoglobin, the spectra of coagulated tissue relates more to the oxy-hemoglobin state. Based on the principle of temperature dependent fluorescence emission a miniaturized sensor was developed which can be used in the light field of radial emitting fibres.

Conclusion: Several optical changes for online-monitoring of signals during endovenous laser ablation showed potential to serve as feedback mechanism. Up to now, only the measurement of the endoluminal temperature could be realized. Further investigations are needed to find suitable technical realization to prevent for under- or overheating during endovenous laser ablation.

Zusammenfassung

Einleitung: Die endovenöse Laserablation nimmt einen zunehmenden Stellenwert in der klinischen Routine ein. Obwohl technische Verbesserungen und spezielle Laser-Behandlungsprotokolle zur Verfügung stehen, besteht der Wunsch nach weiterer Optimierung und der Entwicklung von Feedback-Systemen. Sie sollen Informationen über akute Effekte oder auch des klinischen Resultats liefern, sowie während der Anwendung Hinweise auf eine Unter- oder Überbehandlung geben.

Methode: Zunächst wurde mittels Monto-Carlo-Simulationsrechnungen der temperaturinduzierte Schrumpfungseffekt des Gefäßlu-mens modelliert und untersucht, ob die abstandsabhängige Remissionsintensität der Gewebewand als Signal genutzt werden kann. In einem weiteren Schritt wurde die spektrale Remissionsänderung von nativem und koagulierten Zustand verglichen, um daraus potenzielle Informationsparameter zu extrahieren. Schließlich wurde ein Temperatursensor für intraluminale Messungen im Bestrahlungsfeld während der Laserenergieapplikation entwickelt.

Ergebnisse: Die Monte-Carlo-Untersuchung belegt die Erfassung von Remissionslicht als Schrumpfungsparameter nur bei kleinsten Gefäßdurchmesser. Spektrale Unterschiede bei behandelten versus unbehandelten Venengewebes sind vorhanden, unmittelbare Informationen können allerdings nur schwer erfasst werden. Auf der Basis der temperaturabhängigen spektralen Fluoreszenzemission wurde ein Temperatursensor entwickelt und erfolgreich im Rinder-Fuß-Modell getestet.

Schlussfolgerung: Die dargestellten Untersuchungen zeigen, dass verschiedene optische Änderungen als Signal für ein Feedback-System während der Laserlichtapplikation genutzt werden könnten. Allerdings konnte bisher nur die Temperaturmessung im Strahlungsfeld realisiert werden. Weitere Untersuchungen sind für eine technische Umsetzung der Entwicklungen notwendig, um klinisch die Sicherheit und Reproduzierbarkeit der endoluminalen Laserlichtapplikation weiter zu optimieren.

 
  • Reference

  • 1 Navarro L, Min RJ, Boné C. Endovenous laser: a new minimally invasive method of treatment for varicose veins--preliminary observations using an 810 nm diode laser. Dermatol Surg 2001; 27 (02) 117-122.
  • 2 Min RJ, Zimmet SE, Isaacs MN, Forrestal MD. Endovenous laser treatment of the incompetent greater saphenous vein. J Vasc Interv Radiol 2001; 12 (10) 1167-1171.
  • 3 Goldman MP. Closure of the greater saphenous vein with endoluminal radiofrequency thermal heating of the vein wall in combination with ambulatory phlebectomy: preliminary 6-month follow-up. Dermatol Surg 2000; 26 (05) 452-456.
  • 4 Rass K, Frings N, Glowacki P, Hamsch C, Gräber S, Vogt T, Tilgen W. Comparable effectiveness of endovenous laser ablation and high ligation with stripping of the great saphenous vein: two-year results of a randomized clinical trial (RELACS study). Arch Dermatol 2012; 148 (01) 49-58.
  • 5 Tesmann JP, Thierbach H, Dietrich A, Grimme H, Vogt T, Rass K. Radiofrequency induced thermotherapy (RFITT) of varicose veins compared to endovenous laser treatment (EVLT): a non-randomized prospective study concentrating on occlusion rates, side-effects and clinical outcome. Eur J Dermatol 2011; 21 (06) 945-951.
  • 6 Rasmussen LH, Lawaetz M, Bjoern L, Vennits B, Blemings A, Eklof B. Randomized clinical trial comparing endovenous laser ablation, radiofrequncy ablation, foam sclerotherapy and surgical stripping for great saphenous varicose veins. Br J Surg 2011; 98 (08) 1079-1087.
  • 7 Disselhoff BC, der Kinderen DJ, Kelder JC, Moll FL. Five-year results of a randomized clinical trial comparing endovenous laser ablation with cryostripping for great saphenous varicose veins. Br J Surg 2011; 98 (08) 1107-1111.
  • 8 Disselhoff BC, der Kinderen DJ, Kelder JC, Moll FL. Five-year results of a randomised clinical trial of endovenous laser ablation of the great saphenous vein with and without ligation of the saphenofemoral junction. Eur J Vasc Endovasc Surg 2011; 41 (05) 685-690.
  • 9 Luebke T, Brunkwall J. Systematic review and meta-analysis of endovenous radiofrequency obliteration, endovenous laser therapy, and foam sclerotherapy for primary varicosis. J Cardiovasc Surg (Torino) 2008; 49 (02) 213-233.
  • 10 Luebke T, Gawenda M, Heckenkamp J, Brunkwall J. Meta-analysis of endovenous radiofrequency obliteration of the great saphenous vein in primary varicosis. J Endovasc Ther 2008; 15 (02) 213-223.
  • 11 Sroka R, Weick K, Steckmaier S, Steckmaier B, Blagova R, Sroka I, Sadeghi-Azandaryani M, Maier J, Schmedt CG. The ox-foot-model for investigating endoluminal thermal treatment modalities of varicosis vein diseases. ALTEX 2012; 29 (04) 403-410.
  • 12 Grattan KTV, Selli RK, Palmer AW. Ruby Fluorescence Wavelength Division Fiberoptic Temperature Sensor. Review of Scientific Instruments 1987; 58: 1231-1234.
  • 13 Fonger WH, Struck CW. Temperature dependences of Cr+3 radiative and nonradiative transitions in ruby and emerald. Phys Rev B 1975; 11: 3251-3260.
  • 14 Seat HC, Sharp JH, Zhang ZY, Grattan KTV. Single-crystal ruby fiber temperature sensor. Sensors and Actuators A-Physical 2002; 101: 24-29.
  • 15 Sroka R, Weick K, Sadeghi-Azandaryani M, Steckmeier B, Schmedt CG. Endovenous laser therapy--application studies and latest investigations. J Biophotonics 2010; 3 5-6 269-276.
  • 16 van den Bos RR, Neumann M, de Roos KP, Nijsten T. Endovenous laser ablation-induced complications: review of the Literature and new cases. Dermatol Surg 2009; 35 (08) 1206-1214.
  • 17 Biemans AA, van den Bos RR, Nijsten T. Endovenous therapies of varicose veins: indications, procedures, efficacy and safety. G Ital Dermatol Venereol 2010; 145 (02) 161-173.
  • 18 van den Bos RR, Neumann M, Nijsten T. Laser fibre stabs the catheter: a serious complication of endovenous laser ablation. Phlebology 2011; 26 (03) 119-120.
  • 19 Schmedt CG, Sroka R, Steckmeier S, Meissner OA, Babaryka G, Hunger K, Ruppert V, Sadeghi-Azandaryani M, Steckmeier BM. Investigation on radiofrequency and laser (980 nm) effects after endoluminal treatment of saphenous vein insufficiency in an ex-vivo model. Eur J Vasc Endovasc Surg 2006; 32 (03) 318-325.
  • 20 Arridge SR. Methods in diffuse optical imaging. Philos Transact A Math Phys Eng Sci 2011; 369 1955 4558-4576.
  • 21 Amzayyb M, van den Bos RR, Kodach VM, de Bruin DM, Nijsten T, Neumann HA, van Gemert MJ. Carbonized blood deposited on fibres during 810, 940 and 1,470 nm endovenous laser ablation: thickness and absorption by optical coherence tomography. Lasers Med Sci 2010; 25 (03) 439-447.
  • 22 Hessel S, Hauptmann G. Surgical Laser Instrument. Patent US5098427A. 1992
  • 23 Sroka W.R, Beyer M, Krug A, Noack E, Unsold CEII. Laser-Light Application and Light Monitoring for Photodynamic Therapy in Hollow Organs. Laser Med Sci 1993; 8 (01) 63-68.
  • 24 Ritz JP, Roggan A, Isbert C, Müller G, Buhr HJ, Germer CT. Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm. Lasers Surg Med 2001; 29 (03) 205-212.
  • 25 Peller M, Muacevic A, Reinl H, Sroka R, Abdel-Rahman S, Issels R, Reiser MF. MRI-assisted thermometry for regional hyperthermia and interstitial laser thermotherapy. Radiologe 2004; 44 (04) 310-319.
  • 26 Gorisch W, Boergen K- P. Heat-induced contraction of blood vessels. Lasers Surg Med 1982; 2: 1-13.
  • 27 Vangsness Jr CT, Mitchell W III, Nimni M, Erlich M, Saadat V, Schmotzer H. Collagen shortening, an experimental approach with heat. Clin Orthop 1997; 337: 267-271.
  • 28 Chen SS, Wright NT, Humphrey JD. Heat-induced changes in the mechanics of a collagenous tissue: isothermal, isotonic shrinkage. J Biomech Eng 1998; 120: 382-388.
  • 29 Pannier F, Rabe E, Maurins U. First results with a new 1470-nm diode laser for endovenous ablation of incompetent saphenous veins. Phlebology 2009; 24 (01) 26-30.
  • 30 Maurins U, Rabe E, Pannier F. Does laser power influence the results of endovenous laser ablation (EVLA) of incompetent saphenous veins with the 1 470-nm diode laser? A prospective randomized study comparing 15 and 25 W. Int Angiol 2009; 28 (01) 32-37.
  • 31 Pannier F, Rabe E, Maurins U. 1470 nm diode laser for endovenous ablation (EVLA) of incompetent saphenous veins – a prospective randomized pilot study comparing warm and cold tumescence anaesthesia. Vasa 2010; 39 (03) 249-255.
  • 32 Pannier F, Rabe E, Rits J, Kadiss A, Maurins U. Endovenous laser ablation of great saphenous veins using a 1470 nm diode laser and the radial fibre--follow-up after six months. Phlebology 2011; 26 (01) 35-39.