Phlebologie 2015; 44(04): 192-199
DOI: 10.12687/phleb2251-4-2015
Original article
Schattauer GmbH

Simplified CRB-65 for risk stratification and predicting prognosis in acute pulmonary embolism

Vereinfachter CRB-65 zur Risikostratifizierung und Prognosevorhersage bei Patienten mit akuter Lungenarterienembolie)
K. Keller
1   Department of Medicine II, University Medical Center Mainz (Johannes Gutenberg-University Mainz)
2   Center for thrombosis and haemostasis, University Medical Center Mainz
,
M. Coldewey
1   Department of Medicine II, University Medical Center Mainz (Johannes Gutenberg-University Mainz)
2   Center for thrombosis and haemostasis, University Medical Center Mainz
,
W. Dippold
3   sup>Department of internal medicine, St. Vincenz and Elisabeth Hospital Mainz (KKM)
,
J. Beule
3   sup>Department of internal medicine, St. Vincenz and Elisabeth Hospital Mainz (KKM)
,
J. O. Balzer
4   Department of Radiology and Nuclear medicine, Catholic Clinic Mainz (KKM)
5   Department of Diagnostic and Interventional Radiology, University Clinic, Johann Wolfgang Goethe-University Frankfurt/ Main
› Author Affiliations
Further Information

Publication History

Received: 08 December 2014

Accepted after revision: 02 June 2015

Publication Date:
04 January 2018 (online)

Summary

Background: Pulmonary embolism (PE) and community acquired pneumonia (CAP) are potentially life-threatening diseases. In CAP CRB-65 is used for risk stratification and prognosis prediction. The aim of this study was to examine a simplified CRB-65 (sCRB-65) for predicting prognosis in PE.

Methods: We retrospectively analyzed the data of 182 PE patients. Patients were, according to the score of sCRB-65 (respectively 1 point for dyspnoea, systolic blood pressure < 90 mmHg or diastolic blood pressure60 mmHg, age65years), subdivided in risk-classes 1–4.

Risk classes were compared with Kruskal-Wallis test. Logistic multivariable regression and Pearson correlation matrix were calculated for coherence of sCRB-65 and in-hospital death, right ventricular load and PE severity stadium as well as sCRB-65 > 2points and in-hospital death an PE stadium. ROC analysis was performed to evaluate efficiency of sCRB-65 score to predict in-hospital death and PE severity stadium.

Results: PE severity stadium, systolic pulmonary artery pressure (sPAP) and frequency of in-hospital death increased with growing risk class.

Risk class 1 showed lower PE sever-ity stadium than 2 (P=0.0253), 3 (P=0.0132) and 4 (P=0.00162), lower percentage of patients with sPAP > 30mmHg than 2 (0 % vs. 48.9 %, P=0.0419), 3 (0 % vs. 70.8 %, P=0.00112) and 4 (0 % vs. 75.0 %, P=0.0113). Frequency of in-hospital deaths was higher in risk class 4 than in 1 (P=0.0024), 2 (P=0.00014) and 3 (P=0.000058). Multi-variable logistic regression showed an association between sCRB-65 scored>0 and PE severity stadium (OR 11.42, 95 %CI: 1.35–96.66, P=0.0254), RVD (OR 10.09, 1.16–87.78, P=0.0363) and sPAP (OR 1.08, 1.02–1.15, P=0.0092) as well as a trend towards significance (OR 12.39, 0.90–171.34, P=0.060) between in-hospital death and sCRB-65. sCRB-65 correlated with PE severity stadium (r=0.258, P<0.001) and sPAP (r=0.280, P=0.001). sCRB-65 >2 points was strongly associated with both inhospital death (OR 36.22, 95%CI: 1.59–827.71, P=0.0245) and high-risk PE stadium (OR 57.94, 95%CI: 7.17–468.33, P=0.000141). ROC analysis for CRB-65 predicting in-hospital death and high-risk PE stadium showed AUC values of respectively 0.764 and 0.892 with sCRB-65 cut-off value of 2.5 points, respectively.

Conclusions: sCRB-65 is closely correlated with PE severity stadium and load of the right heart as well as prognosis. PE patients with sCRB-65 score >2 points revealed a 36.2-fold risk to die during in-hospital course after acute PE event. Efficiency of sCRB-65 to predict in-hospital death was good.

Zusammenfassung

Hintergrund: Lungenarterienembolie (PE) und ambulant erworbene Pneumonie (CAP) sind potenziell lebensbedrohende Erkrankungen. Bei Patienten mit CAP wird der CRB-65 genutzt, um eine Risikostratifizierung durchzuführen und eine Prognose abzuschätzen. Das Ziel der vorliegenden Untersuchung war es, einen vereinfachten CRB-65 (sCRB-65) zur Vorhersage der Prognose von PE-Patienten zu begutachten.

Methoden: Wir haben retrospektiv die Daten von 182 PE-Patienten analysiert. Die Patienten wurden, entsprechend den zugeteilten Punkten des sCRB-65 (jeweils 1 Punkt für Dyspnoe, systolischer Blutdruck <90 mmHg und/oder diastolischer Blutdruck 60 mmHg und Alter 65 Jahre), in die Risikoklassen 1–4 eingeteilt.

Die Risikoklassen wurden mittels Kruskal-Wallis-Test verglichen. Logistische multi-variable Regressionsmodelle und eine Pearson-Korrelationsmatrix wurden berechnet, um eine Assoziationen zwischen sCRB-65 und jeweils Versterben im Krankenhaus, rechtsventrikulärer Belastung, PE-Schweregrad, weiterhin sCRB-65 >2 Punkte und dem Versterben im Krankenhaus sowie dem PE-Schweregrad zu untersu-chen. Zudem wurde eine ROC-Analyse, zur Beurteilung der Effektivität, mittels sCRB-65-Punkte-Score ein Versterben im Krankenhaus und einen höheren PE-Schweregrad vorherzusagen, durchgeführt.

Ergebnisse: PE-Schweregrad, systolischer pulmonal-arterieller Druck (sPAP) und die Häufigkeit eines Versterbens im Krankenhaus nahmen mit anwachsender Risikoklasse zu. Patienten der Risikoklasse 1 zeigten im Durchschnitt einen niedrigeren PE-Schweregrad als Risikoklasse 2 (P=0,0253), 3 (P=0,0132) und 4 (P=0,00162), einen niedrigeren Anteil an Patienten mit einem sPAP >30 mmHg als Klasse 2 (0 % vs. 48,9 %, P=0,0419), 3 (0 % vs. 70,8 %, P=0,00112) und 4 (0 % vs. 75,0 %, P=0,0113). Die Häufigkeit eines Versterben im Krankenhaus war in Risikoklasse 4 höher als in Klasse 1 (P=0,0024), 2 (P=0,00014) und 3 (P=0,000058). Die multi-variablen logistischen Regressionsmodelle zeigten eine Assoziation zwischen sCRB-65 >0 und sowohl PESchweregrad (OR 11,42, 95%CI: 1,35–96,66, P=0,0254), rechtsventrikulärer Dysfunktion (RVD) (OR 10,09, 95%CI: 1,16–87,78, P=0.0363) und sPAP (OR 1,08, 95%CI: 1,02–1,15, P=0,0092) als auch einen Trend zu einer Signifikanz (OR 12,39, 95%CI: 0,90–171,34, P=0,060) zwischen einem Versterben im Krankenhaus und sCRB-65. Der sCRB-65 korrelierte mit dem PE-Schweregrad (r=0,258, P<0,001) und dem sPAP (r=0,280, P=0,001). Ein sCRB-65 Wert über 2 Punkten war eng mit sowohl einem Versterben im Krankenhaus (OR 36,22, 95%CI: 1,59–827,71, P=0,0245) als auch einem Hochrisiko-PESchweregrad (OR 57,94, 95%CI: 7,17–468,33, P=0,000141) assoziiert.

Die ROC-Analyse für die Vorhersage eines Versterbens im Krankenhaus und eines Hochrisiko-PE-Schweregrades durch den sCRB-65 zeigte eine Fläche unter der Kurve (AUC) von jeweils 0,764 und 0,892 mit einem sCRB-65-cut-off-Wert von jeweils 2,5 Punkten.

Schlussfolgerungen: Der sCRB-65 korreliert sowohl mit dem PE-Schweregrad und der Rechtsherzbelastung als auch mit der Prognose bei PE-Patienten. PE-Patienten mit einem sCRB-65-Punktwert von >2 Punkten zeigten ein 36,2-fach erhöhtes Risiko, während des initialen Krankenhausaufenthalts nach einem PE-Ereignis zu versterben. Die Effektivität des sCRB-65 zur Vorhersage eines Versterbens im Krankenhaus war gut. Normotensive PE-Patienten unter 65 Jahren ohne Dyspnoe zeigten die beste Prognose.

 
  • References

  • 1 Chalikias GK, Tziakas DN. et al. Managment of acute pulmonary embolism: A contemporary risk-tailored approach. Hellenic J Cardiol 2010; 51: 437-450.
  • 2 Hsu JT, Chu CM, Chang ST. et al. Prognostic role of alveolar-arterial oxygen pressure difference in acute pulmonary embolism. Circulation journal 2006; 70: 1611-1616.
  • 3 Ohigashi H, Haraguchi G, Yoshikawa S. et al. Comparison of biomarkers for predicting disease severity and long-term respiratory prognosis in patients with acute pulmonary embolism. Int Heart J 2010; 51: 416-420.
  • 4 Schellhaass A, Walther A, Konstantinides S, Bot-tiger BW. The diagnosis and treatment of acute pulmonary embolism. Deutsches Arzteblatt international 2010; 107: 589-595.
  • 5 Konstantinides S, Goldhaber SZ. Pulmonary embolism: Risk assessment and management. Eur Heart J 2012; 33: 3014-3022.
  • 6 Keller K, Beule J, Schulz A, Dippold W. Troponin i as risk stratification marker in acute pulmonary artery embolism. Phlebologie 2013; 42: 261-269.
  • 7 Keller K, Beule J, Schulz A. et al. Right ventricular dysfunction in hemodynamically stable patients with acute pulmonary embolism. Thrombosis research 2014; 133: 555-559.
  • 8 Goldhaber SZ. Assessing the prognosis of acute pulmonary embolism: Tricks of the trade. Chest 2008; 133: 334-336.
  • 9 Giannitsis E, Muller-Bardorff M, Kurowski V. et al. Independent prognostic value of cardiac troponin t in patients with confirmed pulmonary embolism. Circulation 2000; 102: 211-217.
  • 10 Jimenez D, Uresandi F, Otero R. et al. Troponin-based risk stratification of patients with acute nonmassive pulmonary embolism: Systematic review and metaanalysis. Chest 2009; 136: 974-982.
  • 11 Torbicki A, Perrier A, Konstantinides S. et al. Guidelines on the diagnosis and management of acute pulmonary embolism: The task force for the diagnosis and management of acute pulmonary embolism of the european society of cardiology (esc). Eur Heart J 2008; 29: 2276-2315.
  • 12 Jimenez D, Diaz G, Molina J. et al. Troponin I and risk stratification of patients with acute nonmassive pulmonary embolism. The European respiratory journal 2008; 31: 847-853.
  • 13 Sanchez O, Trinquart L, Caille V. et al. Prognostic factors for pulmonary embolism: The prep study, a prospective multicenter cohort study. Am J Respiratory and Critical Care Med 2010; 181: 168-173.
  • 14 Wu AH, Jaffe AS, Apple FS. et al. National academy of clinical biochemistry laboratory medicine practice guidelines: Use of cardiac troponin and b-type natriuretic peptide or n-terminal prob-type natriuretic peptide for etiologies other than acute coronary syndromes and heart failure. Clinical chemistry 2007; 53: 2086-2096.
  • 15 Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part ii: Pathophysiology, clinical importance, and management of right ventricular failure. Circulation 2008; 117: 1717-1731.
  • 16 Kucher N, Wallmann D, Carone A. et al. Incremental prognostic value of troponin i and echocardiography in patients with acute pulmonary embolism. Eur Heart J 2003; 24: 1651-1656.
  • 17 Uresandi F, Otero R, Cayuela A. et al. [a clinical prediction rule for identifying short-term risk of adverse events in patients with pulmonary thromboembolism]. Archivos de bronconeumologia 2007; 43: 617-622.
  • 18 Aujesky D, Roy PM, Le Manach CP. et al. Validation of a model to predict adverse outcomes in patients with pulmonary embolism. Eur Heart J 2006; 27: 476-481.
  • 19 Aujesky D, Obrosky DS, Stone RA. et al. Derivation and validation of a prognostic model for pulmonary embolism. Am J Respiratory and Critical Care Med 2005; 172: 1041-1046.
  • 20 Ozsu S, Abul Y, Orem A. et al. Predictive value of troponins and simplified pulmonary embolism severity index in patients with normotensive pulmonary embolism. Multidisciplinary respiratory medicine 2013; 8: 34.
  • 21 Moores L. et al. Pulmonary embolism severity index and troponin testing for the selection of low-risk patients with acute symptomatic pulmonary embolism. JTH 2010; 8: 517-522.
  • 22 Lankeit M, Gomez V, Wagner C. et al. A strategy combining imaging and laboratory biomarkers in comparison with a simplified clinical score for risk stratification of patients with acute pulmonary embolism. Chest 2012; 141: 916-922.
  • 23 Hariharan P, Takayesu JK, Kabrhel C. Association between the pulmonary embolism severity index (pesi) and short-term clinical deterioration. Thrombosis and Haemostasis 2011; 105: 706-711.
  • 24 Donze J, Le Gal G, Fine MJ. et al. Prospective validation of the pulmonary embolism severity index. A clinical prognostic model for pulmonary embolism. Thrombosis and Haemostasis 2008; 100: 943-948.
  • 25 Zhou XY, Ben SQ, Chen HL, Ni SS. The prognostic value of pulmonary embolism severity index in acute pulmonary embolism: A metaanalysis. Respiratory research 2012; 13: 111.
  • 26 McNally M, Curtain J, O’Brien KK. et al. Validity of british thoracic society guidance (the crb-65 rule) for predicting the severity of pneumonia in general practice: Systematic review and metaanalysis. The British journal of general practice 2010; 60: e423-e433.
  • 27 Ewig S, Welte T. Crb-65 for the assessment of pneumonia severity: Who could ask for more?. Thorax 2008; 63: 665-666.
  • 28 Bauer TT, Ewig S, Marre R, Suttorp N, Welte T. Crb-65 predicts death from community-acquired pneumonia. J Internal Med 2006; 260: 93-101.
  • 29 Hoffken G, Lorenz J, Kern W. et al. [epidemiology, diagnosis, antimicrobial therapy and management of community-acquired pneumonia and lower respiratory tract infections in adults. Pneumologie 2009; 63: e1-e68.
  • 30 Kwok CS, Loke YK, Woo K, Myint PK. Risk prediction models for mortality in community-acquired pneumonia: A systematic review. BioMed research international. 2013: 504136.
  • 31 Marti C, Garin N, Grosgurin O. et al. Prediction of severe community-acquired pneumonia: A systematic review and metaanalysis. Crit Care 2012; 16: R141.
  • 32 Jaff MR, McMurtry MS, Archer SL. et al. Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension: A scientific statement from the AHA. Circulation 2011; 123: 1788-1830.
  • 33 Loke YK, Kwok CS, Niruban A, Myint PK. Value of severity scales in predicting mortality from community-acquired pneumonia: Systematic review and meta-analysis. Thorax 2010; 65: 884-890.
  • 34 Aujesky D, Auble TE, Yealy DM. et al. Prospective comparison of three validated prediction rules for prognosis in community-acquired pneumonia. Am J Med 2005; 118: 384-392.
  • 35 Mandell LA, Wunderink RG, Anzueto A. et al. Infectious diseases society of america/american thoracic society consensus guidelines on the management of community-acquired pneumonia in adults. Clinical infectious diseases 2007; 44 (Suppl. 02) S27-72.
  • 36 Nullmann H, Pflug MA, Wesemann T. et al. External validation of the cursi criteria (confusion, urea, respiratory rate and shock index) in adults hospitalised for community-acquired pneumonia. BMC infectious diseases 2014; 14: 39.
  • 37 Matthews JC, McLaughlin V. Acute right ventricular failure in the setting of acute pulmonary embolism or chronic pulmonary hypertension: A detailed review of the pathophysiology, diagnosis, and management. Current cardiology reviews 2008; 4: 49-59.
  • 38 Sekhri V, Mehta N, Rawat N, Lehrman SG, Aronow WS. Management of massive and nonmassive pulmonary embolism. AMS 2012; 8: 957-969.
  • 39 Coutance G, Cauderlier E, Ehtisham J, Hamon M. The prognostic value of markers of right ventricular dysfunction in pulmonary embolism: A metaanalysis. Crit Care 2011; 15: R103.
  • 40 Tapson VF. Advances in the diagnosis and treatment of acute pulmonary embolism. F1000 medicine reports 2012; 4: 9.
  • 41 Kreit JW. The impact of right ventricular dysfunction on the prognosis and therapy of normotensive patients with pulmonary embolism. Chest 2004; 125: 1539-1545.
  • 42 Fremont B, Pacouret G, Jacobi D. et al. Prognostic value of echocardiographic right/left ventricular end-diastolic diameter ratio in patients with acute pulmonary embolism. Chest 2008; 133: 358-362.
  • 43 Becattini C, Vedovati MC, Agnelli G. Right ventricle dysfunction in patients with pulmonary embolism. Internal and emergency medicine 2010; 5: 453-455.
  • 44 Kucher N, Rossi E, De Rosa M, Goldhaber SZ. Prognostic role of echocardiography among patients with acute pulmonary embolism and a systolic arterial pressure of 90 mm hg or higher. Archives of internal medicine 2005; 165: 1777-1781.
  • 45 Grifoni S, Olivotto I, Cecchini P. et al. Short-term clinical outcome of patients with acute pulmonary embolism, normal blood pressure, and echocardiographic right ventricular dysfunction. Circulation 2000; 101: 2817-2822.
  • 46 Keller K, Beule J, Coldewey M. et al. Heart rate in pulmonary embolism. Internal and emergency medicine 2015; DOI: 10. 1007/s11739–015–1198–4
  • 47 Janata K, Holzer M, Laggner AN, Mullner M. Cardiac troponin t in the severity assessment of patients with pulmonary embolism: Cohort study. BMJ 2003; 326: 312-313.