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Abstract
Being largely asymptomatic, thoracic aortic aneurysms
pose a challenge for the physician to identify and inter-
vene in time to prevent death or a major complication.
Knowing how to accurately analyze the available clinical
data is vital to informing the proper management of these
patients. This paper seeks to provide an overview of the
statistical methods most commonly used to analyze clin-
ical outcomes with a special focus on research related to
aortic disease. Copyright © 2014 Science International Corp.

Key Words
Aortic aneurysm · Statistical methods · Clinical
outcomes

Introduction

The latest data from the Centers for Disease Con-
trol and Prevention show that aortic aneurysms in
various locations are the 18th leading cause of death
in the United States. Moreover, in individuals older
than 65 years, aortic aneurysms are the 15th most
common cause of death [1]. These numbers are strik-
ing, because it appears that aortic aneurysms cause
more deaths than the human immunodeficiency virus.
However, many argue that even these numbers are a
significant underestimate of the true impact that aor-
tic disease has on public health, because most cases

of sudden cardiac death are considered to be coronary-
related, while in reality many might be aneurysm-
related. Thoracic aortic aneurysm is a silent disease,
which in the strong majority of cases does not produce
any symptoms [2]. The aorta grows slowly for many
years until it reaches a critical point, at which it either
dissects or ruptures—two complications that are bound
to produce death unless treated immediately.

Being largely asymptomatic, thoracic aortic aneu-
rysms pose a challenge for the physician to identify
and intervene in time to prevent death or a major
complication. Therefore, timely detection of patients
at risk of developing a thoracic aneurysm is critically
important. Such timely detection can be achieved by
identifying risk factors, clinical conditions, and bio-
markers that have been associated with thoracic aor-
tic disease [2]. For example, in recent years such con-
ditions as bicuspid aortic valve, [3] intracranial
aneurysm, [4] and bovine aortic arch [5], as well as a
strong family history of aortic disease [6] have all been
shown to be associated with thoracic aortic aneurysm
and dissection. Nevertheless, a large percentage of
newly identified thoracic aortic aneurysms are inci-
dental findings revealed during imaging studies
(echocardiography, computed tomography, MRI) per-
formed for unrelated reasons. Once a patient has
been diagnosed with a thoracic aneurysm, it is vitally

Fax �1 203 785 3346
E-Mail: aorta@scienceinternational.org
http://aorta.scienceinternational.org

© 2014 Aorta.
Published by Science International Corp.
ISSN 2325-4637

Accessible online at:
http://aorta.scienceinternational.org

*Corresponding author:
John A. Rizzo, PhD
Stony Brook University
403 Myrtle Ave
Port Jefferson, NY 11777
Tel: �1 631 741 8539, Fax: �1 631 828 6517, E-Mail: rizzologic@gmail.com

State-of-the-Art Review

Aorta, April 2014, Volume 2, Issue 2: 45–55
DOI: http://dx.doi.org/10.12945/j.aorta.2014.14-019

Received: March 1, 2014
Accepted: March 15, 2014
Published online: April 2014

http://dx.doi.org/10.12945/j.aorta.2014.14-019


important to closely monitor the progression of the
aneurysm until a critical size is attained, at which time
surgical treatment is considered appropriate. The es-
timated growth rate of thoracic aneurysms is approx-
imately 0.1 to 0.15 cm/yr [2]. If the aorta is rapidly
increasing in size, that is an indication for early surgi-
cal intervention.

Current and future success in combating the “Silent
Killer” (i.e. thoracic aortic aneurysm) is largely depen-
dent on high-quality clinical research that is being
performed at centers with large numbers of patients
with thoracic aortic disease. However, it must be em-
phasized that appropriate data collection and analysis
pose a serious challenge. Clinical data that are col-
lected retrospectively and/or prospectively typically
have a nonexperimental design and also bear other
common imperfections, presenting challenges in esti-
mating and identifying risk factors, early and late mor-
tality and morbidity, as well as long-term survival and
other outcomes for this disease. For this reason, know-
ing how to accurately analyze the available clinical
data is vital for clinical researchers. Fortunately, there
are many statistical techniques and tools that are
currently available to a clinical scientist to aid in data
analysis. It is just a matter of knowing which statistical
method is appropriate for analyzing a specific out-
come, and how to use that method.

Therefore, this paper seeks to provide an overview
of the statistical methods most commonly used to
analyze clinical outcomes with a special focus on re-
search related to aortic disease. In this paper we will
offer recommendations for dealing with complex sta-
tistical issues and will also provide references for fur-
ther reading on each of the covered topics. We hope
this paper will be “one-stop shopping” for many car-
diovascular investigators working in the field of aortic
disease.

Clinical Outcomes and Risk Factors

Clinical outcomes are the variables we wish to
analyze and predict. These may include such measures
as mortality, aneurysm size, and/or survival. Clinical
outcomes may be binary as in the case of mortality, or
continuous as in the case of aneurysm size. They may
be static, i.e., measured at a point in time; or longitu-
dinal, i.e., measured over time. Survival is an example

of a clinical outcome that is longitudinal because
survival is measured over time.

Predictor variables (also called independent vari-
ables, explanatory variables, control variables, or risk
factors) can be used to predict the value of outcome
variables. They may be static or longitudinal as well. An
example of a static risk factor is aneurysm size, while a
longitudinal one is change in aneurysm size. Other ex-
amples of risk factors for clinical outcomes of aortic
disease are age, gender, hypertension, smoking, high
cholesterol, diabetes, or family history of aortic disease.

Predictor variables can be continuous or binary/
categorical variables. Continuous variables can include
an infinite number of different values within a given
range. Variables such as blood pressure, height,
weight, aortic aneurysm size, and growth rate are
usually measured in the continuous form. Binary vari-
ables, sometimes called dummy variables, are used to
sort data into mutually exclusive categories. Binary
variables assume the value 0 or 1 to indicate the
absence or presence of some qualitative effect. For
example, we can construct a binary variable of
FEMALE, which only takes the value of 0 or 1. The
binary variable FEMALE � 1 if the patient’s sex is
female, and FEMALE � 0 if the sex is male.

Mathematically, one may express the relationship
between an outcome variable Y and a number of
predictor variables represented by the vector X as a
functional relationship:

Y � f(X) (1)

The above equation specifies the relationship be-
tween Y and X. The value of Y depends on the Xs, the
predictor variables. Y is expected to change if the Xs
take different values. The precise relationship between
Y and X can be linear, nonlinear, or some other func-
tional form.

Linear functional forms. The most common
relationship between a single predictor variable X and
Y can be specified as

Y � � � �X, (2)

which indicates a linear relationship between Y and X.
Mathematically, the estimated relationship between X
and Y is thus ΔY/ΔX � �, where � is a constant
number.
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Quadratic functional forms. Quadratic func-
tions are used to capture decreasing or increasing
marginal effects of a predictor variable X.

Y � � � �1X � �2X2. (3)

To illustrate, suppose that Y � TAA size, and X �
AGE. The above model specification shows that the
relationship between X and Y depends on the value of
X. The estimated relationship is approximately the
following: ΔY/ΔX � �1 � 2�2 * X. If �1 � 0 and �2 �
0, i.e., the estimated values of �1 and �2 are positive,
the quadratic functional form shows that TAA size
increases with age, and the size increases faster among
the elderly population. But if �1 � 0 and �2 � 0, TAA
size would increase more slowly with age.

Step functional forms. The step function is a
function that increases or decreases abruptly from one
level to another. For example, let Y represent the
annual risk of aortic dissection or rupture and X de-
note aneurysm size. The relationship between Y and X
may be best described as a step function, where

Y � 0.5% if X � 4 cm. (4)

2% if 4 � X � 6 cm

10% if X � 6 cm.

The step function in this example says that the an-
nual risk of dissection or rupture is 0.5% if the aneurysm
is less than 4 cm, but jumps to 2% for aneurysms
between 4 cm and 6 cm, and to 10% for aneurysms 6
cm or higher.

Statistical Testing

Once outcome and predictor variables have been
defined and the functional relationship between them
considered, statistical tests of association must be ap-
plied to quantify the assumed relationships.

Bivariate Approaches
When investigating the effects of a single explan-

atory variable on an outcome, the analysis is said to be
bivariate. Which statistical approach to employ de-
pends on the nature of the dependent variable as well
as the predictor variable. In particular, the appropriate
test will differ depending on whether these variables
are continuous, like aortic aneurysm size, or categori-

cal, like mortality. There are four cases to consider,
summarized in Table 1.

Case #1: Outcome variable continuous, predic-
tor variable categorical. When the depen-
dent variable is a continuous measure like aortic an-
eurysm size and the predictor variable is categorical,
the t-test or simple linear regression (ordinary least
squares) is appropriate. The t-test determines whether
the means of two groups are statistically different, and
is appropriate whenever you want to compare the
means of two groups. For example, one could employ
a t-test to examine whether mean aneurysm size dif-
fered between patients with and without Marfan syn-
drome. Simple linear regression also determines
whether differences in the outcome variable are sta-
tistically different employing a t-test.

Case #2: Outcome variable categorical, predictor
variable categorical. When both the outcome
and predictor variable are categorical, the chi-square
(	2) test statistic and/or logistic regression are appro-
priate. For example, if one wanted to investigate
whether having a bovine aortic arch anomaly (a cat-
egorical variable) was related to having a bicuspid
aortic valve, one could employ a chi-square test or
estimate a logistic regression model.

Case #3: Outcome variable continuous, predic-
tor variable continuous. In this case, simple
linear regression (ordinary least squares) may be used.
Linear regression would be appropriate, for example,
if one wanted to examine the relationship between a
patient’s age and aortic aneurysm size.

Case #4: Outcome variable categorical, predic-
tor variable continuous. Logistic regression
analysis may be used to examine the relationship
between a continuous predictor variable and a cate-
gorical outcome. For example, if one wished to study

Table 1. Appropriate Statistical Approaches Depending on Na-
ture of Outcome and Predictor Variables

Predictor
Variable

Outcome Variable

Categorical Continuous

Categorical Chi-square or Logistic
regression

t-test or Linear
regression

Continuous Logistic regression Linear regression

The list of statistical tests here is not exhaustive. Other tests are available. However,

we wish to focus our discussion on the four commonly used statistical approaches

included in this table.
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the relationship between aortic aneurysm size and risk
of dissection or rupture, one could employ logistic
regression analysis.

Case-Control Studies
Case-control studies are commonly employed in

clinical research in order to infer treatment effects.
These studies identify a treatment group (the cases)
and a comparator group (the controls). The difference
in outcomes between the cases and the controls pro-
vides an estimate of the treatment effect. When no
attempt is made to adjust for differences between the
cases and controls other than the treatment, the case-
control study is a bivariate analysis. But cases and
controls are often selected to match on a variety of
other variables, such as age, gender, and race, in order
to remove differences between the two groups along
these other dimensions. In these instances, case-control
studies have some similarity to multivariable analyses, in
that they attempt to adjust for confounders.

Case-control studies may also include pre and post
periods. In the pre period, both cases and controls do
not receive any treatments. In the post periods, only
the cases receive the treatments, but the controls do
not. Even if cases and controls are dissimilar, the
differences-in-differences estimation approach will net
out these factors. The so-called differences-in-
differences method estimates treatment effects as
follows:

Treatment effect � (Cases_Post 
 Cases_Pre)

 (Controls_Post 
 Cases_Pre). (5)

This approach implicitly nets out time-invariant
factors that differ between treatments and controls
[7,8]. The differences-in-differences approach may also
be used in multivariable regression.

Multivariable Regression
While bivariate analyses can often shed light on

associations between variables, they fail to establish
causal relationships [9]. This is because simple associ-
ations between two variables fail to account for other,
confounding factors. To take an extreme example,
suppose that one collected data on two variables,
whether people carried matches and whether these
same people had heart disease. According to Table 1
above, a chi-square test could be used and it would
very likely show a positive and statistically significant

relationship. That is, we would find that people who
carried matches were significantly more likely to have
heart disease. But what does this mean? It cannot
mean that carrying matches causes heart disease. The
explanation is that people who carry matches are
much more likely to be smokers, and it is smoking that
leads to heart disease. Hence, in this example, the
simple bivariate model is inadequate and a more com-
plex, multivariable model is required, that includes
smoking status.

The need for multivariable modeling arises when
data are nonexperimental. In such cases, one cannot
rely on randomization to net out the influence of
other confounding variables [9]. The idea behind mul-
tivariable modeling is to include confounders in your
model to remove their influence, thus approximating
an experiment. This reduces bias (i.e., inaccurate esti-
mates of the true relationship between the predictor
variable(s) and the outcome) and leads to more reli-
able estimates of the effects of the predictor vari-
able(s) of interest. There are many kinds of multivari-
able models, but two that we will discuss here figure
quite prominently in clinical outcomes research. These
are logistic regression analysis and linear regression
analysis.

Logistic regression. Logistic regression is used
when multiple variables are included to predict a
binary outcome, such as mortality or the occurrence of
an adverse reaction [10]. The logistic regression model
is designed to predict the likelihood of the outcome of
interest. Predictor explanatory variables are selected in
order to provide a model that predicts the outcome of
interest the most accurately.

Logistic regression relates the natural logarithm of
the odds ratio to a linear combination of the predictor
variables. The odds ratio is defined as the probability
of the outcome, �, divided by 1 minus the probability.
To understand the logistic regression model requires
some familiarity with probability, the odds ratio, and
the natural logarithm of the odds ratio. Begin with the
concept of probability. Suppose the ten year proba-
bility of an aortic dissection is 0.6, i.e., 60%. Then, the
probability of not having an aortic dissection in ten
years � 1 � 0.6 � 0.4 or 40%. The odds of a dissection
are defined as the ratio of the probability of having a
dissection divided by the probability of not having a
dissection. In this example, the odds of an aortic dis-
section are 0.6/0.4 � 1.5. In other words, the odds are
1.5 to 1. If the probability of a dissection is 0.5, i.e.,
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50-50% chance, then the odds of dissection is 1 to 1.
The transformation from probability to odds is a
monotonic transformation, meaning the odds increase
as the probability increases or vice versa. Probability
ranges from 0 to 1, while odds range from 0 to posi-
tive infinity.

But in logistic regression analysis, we take the nat-
ural logarithm of the odds ratio as our dependent
variable and relate this to a linear combination of
explanatory variables. Thus, logistic regression esti-
mates the following relationship:

In (�/1 
 �) � � � �X � u, (6)

where � is a constant term, � a vector of parameters
to be estimated, X a vector of risk factors, and u is the
error term for those risk factors that we are not able to
control for. The error term is assumed to follow a
logistic distribution, which is similar to the bell-shaped
normal distribution, but with heavier tails at either
extreme. Because all the risk factors are assumed to be
non-random, the dependent variable in equation (6)
also follows a logistic distribution and the logistic
regression model can be applied to equation (6) [9].
Why use the natural logarithm of the odds ratio in-
stead of the odds ratio itself? One main reason is that
the natural logarithm of the odds ratio varies from
plus or minus infinity while the odds ratio is truncated
at 0. It is more convenient to deal with a model that
does not have this truncation issue.

Because of the way the logistic regression model is
estimated, it does not directly provide the predicted
odds ratio or probability of the event. To obtain the
odds ratio (OR), one must exponentiate both sides of
equation (6): OR � e(� � �X), where e is Euler’s number,
equal to approximately 2.718. That is, one must take
Euler’s number and raise it to the power equal to the
estimated equation, � � �X, in order to obtain the OR
value. The predicted probability of the event, Prob, is
given by the formula:

Prob � e(���X)/(1 � e(���X)). (7)

Because the exponential function is always posi-
tive, the predicted probability will always lie between
0 and 1. Standard statistical packages like SAS [11],
Stata [12], and SPSS [13] may be employed to estimate
logistic regression models. The effects of individual
predictor variables are usually expressed in terms of
odds ratios, but these effects may be transformed to

provide marginal effects on the probability of the
outcome, or dependent variable. The logistic regres-
sion model is similar to the probit regression model, in
which the error term follows a normal rather than a
logistic distribution (recall from above that the logistic
distribution is like the normal but with heavier tails at
either extreme). The advantage of the logistic regres-
sion is that it has a simpler analytical form and reports
odds ratios that can be used to show the effects of risk
factors.

Linear regression. Linear regression is used
when the outcome variable of interest is continuous
rather than binary [9]. For instance, if one wished to
identify factors affecting aortic aneurysm size, linear
regression would be used rather than logistic regres-
sion because aneurysm size is a continuous measure.
Linear regression may be used to model one or more
explanatory variables. When one explanatory variable
is used, it is referred to as simple linear regression, and
when more than one variable is used, as multiple
linear regression.

As its name suggests, linear regression posits that
the dependent or outcome variable is related to the
explanatory variables in a linear fashion. This is the
simplest, most commonly employed regression model
when the outcome variable is continuous. A linear
regression model may be written as:

Y � � � �X � u (8)

where, as in the logistic regression, � is a constant
term, � is a vector of parameters to be estimated, X is
a vector of predictor variables and u is the error term
for all the risk factors that we are not able to control
for. Assuming there are i observations, the estimated
regression line obtains a predicted value for each
observation. The parameters � and � are estimated so
as to obtain the regression line that is the “closest fit”
to the dependent variable Y. This line will be the
closest in the sense that the sum of the squared
deviations between each value for Y and its predicted
value from the regression line are minimized.

Survival analysis. In survival analysis, the out-
come variables are duration measures, meaning what
is assessed is the time until the event of interest
occurs. Examples include time from diagnosis to sur-
gery and the length of survival after aortic valve re-
placement. The duration, or the survival time, may be
measured in days, weeks, months, or years. Survival
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times are usually positive and censored. Censoring
occurs when the process is ongoing and the informa-
tion about the survival time is incomplete. Survival
functions and hazard functions are key concepts in
survival analysis. To illustrate these functions, let T � 0
denote the duration, and t a particular value of T. The
survival function is defined as S(t) � P(T � t); that is,
the probability of surviving beyond time t. The hazard
function, �(t), is defined as the instantaneous proba-
bility of failure at a particular point in time, t, given
that the respondent has survived up to time t.

In survival analysis, we wish to know whether and
to what extent patients’ demographic characteristics,
such as age, gender, or treatment factors, can affect
survival times. Several methods are available to ana-
lyze the relationship between predictor variables and
survival time [14]. Parametric methods assume that
the underlying distribution of the survival times fol-
lows certain probability distributions, such as expo-
nential or Weibull. If the distribution of the survival
time T is exponential, the hazard rate becomes con-
stant �(t) � �. In other words, the probability of failure
in the next time period does not depend on how
much time has been spent in the initial state, i.e., the
process that drives survival time is independent of the
duration. By contrast, if T has a Weibull distribution,
hazard rates depend on the duration t, i.e., the hazard
may increase or decrease with t. Another popular
regression model for the analysis of survival data is the
Cox proportional hazards regression model [15]. The
Cox regression model has been widely used in survival
data analysis, and allows one to adjust for covariates of
interest. Cox regression analysis assumes the hazard ratio
comparing two observations is constant over time.

The Kaplan-Meier method is a nonparametric esti-
mator of the survival function [16]. A nonparametric
estimator is one in which a prior functional form or
relationship, such as a Weibull distribution, is not as-
sumed in advance, but is determined by information
derived from the data itself. This method has been
widely used to estimate survival probabilities as a
function of time. It estimates the probability of surviv-
ing beyond a given time t. The estimate is the product
of a series of conditional probabilities:

S(t) � P(T  t) � p1*p2*p3*...*pt (9)

where p1 indicates the proportion of patients surviv-
ing at least one year, p2 indicates the proportion of

patients surviving the second year given that they
have survived the first, and so on. This method may be
used to test the differences between estimated sur-
vival rates among two or more groups of respondents,
such as treated versus control groups, males versus
females, etc. The log-rank test can be used to compare
two survival curves and to determine whether the
differences in survival between two groups or treat-
ments are statistically significant [17,18]. The null hy-
pothesis is that there is no difference between the
survival curves. The test statistic for the log-rank test is
chi-squared distributed. If the p-value of the test sta-
tistic is less than 0.05, then the two survival curves
differ significantly at 95% confidence level.

Challenges in Statistical Modeling

The goal of statistical modeling is to provide in-
sight into factors affecting an outcome of interest.
Given the imperfect nature of clinical data, however,
there are numerous potential problems that must be
considered and addressed in order to ensure that one
obtains reliable estimates. This section considers a
number of the most commonly occurring issues.

Measurement error. As its name suggests, the
term measurement error refers to variables being
measured inaccurately [19]. This may occur with the
outcome as well as the predictor variables. Some med-
ical record information may be recorded inaccurately.
If patient survey data are used, patient recall may be
imperfect. The results of imaging studies may be in-
terpreted inaccurately. Measurement error thus intro-
duces an element of random noise, which may bias or
otherwise obfuscate the true relationships between
the predictor variables and the outcome of interest.

The effect of measurement error differs for predic-
tor and outcome variables. If the outcome variable is
measured with error, there will be no bias in the
estimated effect of the predictor variable on the out-
come. A noisy outcome variable means there is a loss
of precision. As a result, it will be more difficult to
demonstrate a statistically significant relationship.
Thus, while the estimated effect of the predictor vari-
able will be unchanged with measurement error, the
significance level will be reduced. Because measure-
ment error in the outcome variable is random, it will
be uncorrelated with the predictor variables. And
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since it is uncorrelated with these variables, such mea-
surement error can have no effect on the estimated
relationship between the predictor variables and the
outcome. We say that these estimates will be unbi-
ased. So measurement error in the outcome variable
results only in a loss in precision. And because a larger
sample size improves the precision of one’s estimates,
collecting more data can help overcome the loss of
precision associated with measurement error in the
outcome variable.

When measurement error occurs in the predictor
variable, matters are more serious because the esti-
mated effect will be biased toward zero. That is, mea-
surement error will cause one to estimate a smaller (in
absolute value) relationship between the predictor vari-
able and the outcome. For example, if patients self-
report their antihypertensive medication usage quite in-
accurately, one might estimate that there is no
relationship between taking antihypertensive drugs and
aneurysm growth rates. But this simply reflects that the
predictor variable really isn’t capturing antihypertensive
drug use, since it is measured so inaccurately.

The best fix to measurement error is prevention;
that is, ensuring that all variables are measured as
accurately as possible. In reality, however, some mea-
surement error is always present. One correction is to
eliminate extreme values, on the theory that a dispro-
portionate share of values very far from the mean (say
three or more standard deviations) are likely to be
erroneous and often regarded as outliers [20]. In this
case, it is important to eliminate extreme values in a
symmetric fashion. That is, if you eliminate values that
are more than three standard deviations above the
mean, you should also eliminate those that are more
than three standard deviations below. Failure to do so
will lead to bias. Consider for example, aneurysm growth
rates. If some values are negative, the researcher may be
tempted to remove them as that is clear evidence of
measurement error (e.g., aneurysms do not naturally
shrink). But just because those errors are more readily
apparent does not mean that there are no errors at the
high end of the distribution. And failure to trim extreme
values at the high end as well as the low end of the
distribution will lead to upward bias in estimated aneu-
rysm growth rates in this example.

Because the problem with measurement error in
the outcome variable is a lack of precision, increasing
the sample size, if possible, will improve precision and
may resolve the problem. Another approach here is

the use of instrumental variables [19]. That is, finding a
variable—called an instrument—that is measured
with little error and that is correlated with the out-
come variable of interest. The outcome variable is
then regressed on this instrumental variable—only
variation in the outcome that is not noise will correlate
with this instrument. This approach has been used
fruitfully in studies that have estimated aortic aneu-
rysm growth rates. Aortic aneurysm growth rates are
measured with some error due to the use of different
imaging modalities, interobserver variation, and tech-
nical limitations in imaging studies [21,22]. But the
time interval between imaging studies (the instrumental
variable in this example) is measured quite accurately
and should be well correlated with actual changes in
aneurysm size. That is, patients whose imaging studies
were taken at longer intervals should demonstrate
greater true aneurysm growth.

Overfitting. Overfitting occurs when too many
explanatory variables are included in a model [23].
Overfitting is a problem because it can lead to unsta-
ble and imprecise estimates. On the one hand, the
researcher wishes to include as many clinically rele-
vant predictor variables as possible, both to identify all
relevant factors and to avoid the problem of omitted
variables bias to be discussed below. But the number
of explanatory variables that may be included is lim-
ited by the sample size. To see this, suppose that one
has a sample of 500 patients who underwent elective
replacement of their thoracic aortic aneurysms and
that 10 of these patients died. The researcher wishes
to estimate a model that includes 10 risk factors for
mortality in elective TAA repair. But with this database,
including all of these variables in a logistic regression
model would clearly lead to overfitting. With just 10
deaths out of 500 patients, there is simply too little
variation to parse out effects to as many as 10 vari-
ables. In fact, in logistic regression, there is a rule of
thumb known as the “10 to 1 rule” that provides some
guidance as to how many variables may be included.
This rule says that the maximum number of variables
that may be included is equal to the number of ob-
servations on the less frequent outcome in the binary
variable, divided by 10. So if you have 100 outcomes,
40 of which are death and 60 survival, a logistic re-
gression of factors predicting mortality should include
at most 4 (i.e., 40/10) explanatory variables. For linear
regression models, one can generally include more
explanatory variables for a given sample size because
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the dependent variable has more variation, as it is a
continuous rather than a binary measure.

Omitted variables bias. Omitted variables bias
arises when an important explanatory variable that is
correlated with both the dependent variable and the
explanatory variable of interest is omitted [9]. Recall
the example of carrying matches and heart disease. If
a logistic regression model were estimated relating
carrying matches to the likelihood of developing heart
disease, one would almost surely obtain a positive
estimate. That is, carrying matches is positively asso-
ciated with the probability of heart disease. But surely
this is not a meaningful relationship, as matches can-
not cause heart disease. The problem is that an im-
portant variable has been omitted from the model;
namely, smoking. Smokers are more likely to carry
matches and more likely to have heart disease. Thus,
smoking behavior should be added to the model. And
when this is done, the resulting model would likely
show that it is smoking behavior that leads to heart
disease and that carrying matches now has no mean-
ingful relationship to heart disease.

The thing to remember when building a model to
predict cardiac clinical outcomes is that one should
strive to be thorough by including as many clinically
relevant predictor variables as possible to avoid the
possibility of omitted variables bias as illustrated
above. Sometimes we are unable to avoid omitted
variables, as when those variables are not observable.
Proxy variables may sometimes prove useful when
there is an omitted variables problem. Suppose, for
example that we wish to include systolic blood pres-
sure as a risk factor, but this measure is unavailable.
But suppose we do know whether the subject is hy-
pertensive or not. We could then construct a binary
variable measuring whether the subject is hyperten-
sive as a proxy measure for the omitted variable.
When we are unsure whether one variable should be
included into the regression or omitted because of its
relevance to the outcome variable that we are study-
ing, it is often reasonable to include it into the regres-
sion. An irrelevant variable will have little effect on the
estimated coefficients on the other risk factors. How-
ever, one must remain sensitive to the problem of
overfitting, which occurs when too many explanatory
variables are included, as discussed above.

Multicollinearity. As we add variables to make
the model more complete, we may encounter a prob-
lem known as multicollinearity. Multicollinearity arises

when two or more explanatory variables are highly
correlated with one another [9]. When this happens,
the explanatory variables will be estimated impre-
cisely. We may find, for example, that two variables are
statistically insignificant. Yet when we drop either one
of them from the model and reestimate, the remain-
ing variable becomes highly significant.

How can we detect multicollinearity and what can
we do about it? As a first step, one should look at
simple correlations among explanatory variables. If
the correlations are very high— say 80% or so—there
is a good chance that multicollinearity will be present.
Standard statistical packages like SAS [11], Stata [12],
and SPSS [13] include formal tests for multicollinearity
such as the Variance Inflation Factor (VIF) [24].

If multicollinearity is present, there are several op-
tions. First, we may simply drop one of the highly
correlated explanatory variables. To return to the
matches and heart disease example, suppose we
found that carrying matches and smoking were ex-
tremely highly correlated so that, when we included
both variables in a regression to predict heart disease,
neither one was statistically significant. In this case, the
solution is clear. One should simply drop the “carrying
matches” variable because there is no clinical or other
rationale as to why carrying matches should cause heart
disease. It simply does not belong in the model on
conceptual grounds and should be excluded.

But what if the situation is less clear? Suppose we
find that hypertension (HTN) and hypercholestemia
are both significant predictors of coronary artery dis-
ease (CAD) and that they are both highly correlated
with one another. Since each could cause CAD, what
are we to do? In this case we might consider collaps-
ing both variables into one index variable. For exam-
ple, we could define a variable that is equal to 2 if a
patient has both HTN and hypercholestemia, equal to
1 if the patient has one of these conditions, and equal
to 0 if the patient has neither condition. This avoids
the problem of multicollinearity without dropping one
of the variables.

A third possibility is to obtain more data. In gen-
eral, the larger your database, the more highly corre-
lated explanatory variables may be without multicol-
linearity becoming a problem. The reason is that more
data means more variation in the dependent variable.
And regression models fit this variation to each of the
explanatory variables. So the more variation there is to
be explained by the independent variables, the more
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precisely they can be estimated, mitigating the prob-
lem of multicollinearity.

Reverse causation. Regression models pre-
sume that the risk factors or explanatory variables
are predetermined in the sense that they affect the
outcome variable but not the reverse. This must be
true if one hopes to establish a causal relationship
between the predictor variables and the outcomes.
If this is not true, then it will be impossible to infer
any causality.

Reverse causation occurs when the predictor vari-
able is also affected by the outcome. To illustrate the
problem of reverse causation, consider two variables
that may be used to predict aortic aneurysm size. The
first variable is age. Age may be regarded as a prede-
termined or exogenous variable here because, while it
may affect aneurysm size, aneurysm size cannot affect
age. The second variable is a binary variable indicating
whether the subject exercises strenuously using
weights. Now strenuous exercise may cause aneu-
rysms to grow. But causation goes in the other direc-
tion as well, because people with larger aneurysms
may refrain from strenuous exercise. So in this exam-
ple, the researcher hypothesizes that strenuous exer-
cise increases aneurysm size. But because of the neg-
ative reverse causation, this relationship will be
underestimated, i.e., be less positive than the true
effect of strenuous exercise. Indeed, if the negative
reverse causation is strong enough, one may even
estimate a negative association between strenuous
exercise and aneurysm size. Because exercise cannot
shrink aneurysms, this would be clear evidence of a
reverse causation problem.

While statistical methods to correct for reverse
causation are well known, [25,26] they have been
rarely employed in the medical literature [27]. The
data requirements, both in terms of sample size and
breadth of variables needed to implement these
techniques, are often lacking in clinical databases.
And when these techniques are implemented, one
can never be sure if reverse causation has been
adequately corrected. The best approach is to avoid
reverse causation altogether by excluding such vari-
ables. When this is not possible, the researcher
should be aware of the potential for bias and inabil-
ity to infer causality as discussed above.

Selection effects. Selection effects arise when
the sample being studied is not representative of the
population of interest [28]. This may occur for a variety

of reasons. For example, one may wish to study the
natural history of disease progression such as aortic
aneurysm growth. But patients with larger, rapidly
growing aneurysms are differentially selected out for
surgical correction. The resulting sample available to
the researcher will include disproportionately high
numbers of observations from patients with smaller,
more stable aneurysms. As a result of this selection
effect, estimated aneurysm growth rates will be
smaller than the true natural history of disease pro-
gression. As with reverse causation, statistical correc-
tions for selection effects are well known, but they are
quite data intensive [28]. At a minimum, however, the
researcher should be aware of the potential for selec-
tion effects and have some intuition about their
implications for interpreting results. In the aneu-
rysm growth rate example just discussed, selection
effects mean that the true natural history of the
disease was not estimated. Instead, aneurysm
growth given the availability of surgical correction
was estimated. This is still useful information, but it
is different from the natural history.

Summary

Statistical analysis of clinical data is challenging
because such data inevitably have limitations. Un-
like clinical trial data, treatment and control groups
may differ, data capture may be less complete, and
variables are likely to be measured with less accu-
racy in many cases. On the other hand, such data

Table 2. To Optimize Clinical Studies from a Statistical
Standpoint

• Measure accurately (both predictor and outcome variables)
• Make “n” as large as possible (analyze more charts, defer

analysis until more patients recruited)
• Choose predictor variables carefully based on clinical

judgment
• Do not overfit variables into regression analysis (so, use a

parsimonious model)
• Avoid using predictor variables that are too highly

correlated with each other (thus, avoiding multicollinearity)
• Be certain that predictor variables are not affected by

outcome variables (reverse causation)

A link to a statistical program illustrating the issues discussed here using practice

databases will be available to researchers in a subsequent issue in this Journal.
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provide evidence of real-world treatments and out-
comes and may allow one to obtain larger sample
sizes. Moreover, ethical constraints often preclude
certain potentially statistically convenient experi-
mental designs. For example, one would not ran-
domly assign patients to surgical aortic aneurysm
repair versus medical management when the for-
mer was clearly indicated.

As discussed above, there are numerous statistical
issues to be considered in working with clinical data.
But when given proper attention, most if not all of
these concerns can be adequately addressed. Proper
use of clinical data for research purposes should begin
with measuring risk factors and outcomes as accu-
rately as possible and by obtaining as large a sample
as feasible. And predictor variables should be chosen
carefully and be included based on strong clinical or
other theoretical considerations. Models should be
parsimonious, in order to avoid overfitting. These vari-
ables should not be too highly correlated with one
another, or else problems of multicollinearity will oc-
cur. And predictor variables should be predetermined
and not a function of the outcome variable, so that
one may draw causal inferences. Table 2 provides a

summary checklist of issues to consider when prepar-
ing and analyzing a clinical database.

Applying these statistical checks is as much an art
as it is a science. There is no absolute cutoff for what
constitutes correlation among variables that that is
“too high,” for example. That will depend on the
specific database, the size of the sample—and the
researcher’s own best judgment. As with clinical prac-
tice, experience and familiarity with statistical model-
ing improves the reliability and quality of one’s results.
And there are some excellent, user-friendly texts on
statistical modeling tailored to the clinician for further
reading on these topics [29–32]. We hope that the
issues discussed in this article provide some assistance
to clinical investigators as they work through these
modeling issues in their own research.
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