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Abstract
An extensive search of the medical literature examining
the development of the thoracic aortic tree reveals that
the thoracic aorta does not develop as one unit or in
one stage: the oldest part of the thoracic aorta is the
descending aorta with the aortic arch being the second
oldest, developing under influence from the neural
crest cell. Following in chronological order are the prox-
imal ascending aorta and aortic root, which develop
from a conotruncal origin. Different areas of the tho-
racic aorta develop under the influence of different
gene sets. These parts develop from different cell line-
ages: the aortic root (the conotruncus), developing
from the mesoderm; the ascending aorta and aortic
arch, developing from the neural crest cells; and the de-
scending aorta from the mesoderm. Findings illustrate
that the thoracic aorta is not a single entity, in develop-
mental terms. It develops from three or four distinct ar-
eas, at different stages of embryonic life, and under dif-
ferent sets of genes and signaling pathways. Genetically
triggered thoracic aortic aneurysms are not a monolithic
group but rather share a multi-genetic origin. Identifica-
tion of therapeutic targets should be based on the predi-
lection of certain genes to cause aneurysmal disease in
specific aortic segments. Copyright © 2014 Science International Corp.
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“Out of intense complexities, intense simplicities
emerge”. —Winston Churchill

Introduction and Aim of Research

Thoracic aortic aneurysms continue to present cli-
nicians with considerable clinical challenges, particu-
larly with risk prediction and its implications on man-
agement plan. Previous reports [1,2] have identified
those conditions arising due to inherited causes (i.e.,
genetically triggered thoracic aortic or GenTAC dis-
eases) as the second most common cause of aortic
disease, most frequently clinically recognizable well
before the age of 50. Patients affected by such dis-
eases are at a markedly higher risk of mortality (250-
fold in some cases) and morbidity, thus making early
detection and definitive management imperative.

Current research indicates, however, that these dis-
eases represent a heterogeneous group of conditions
[3,4] sharing only the common feature of “aortic”
involvement. Although involvement of the aortic root,
aortic annulus, and ascending aorta represents the
highest risk to patients, no clear association between
any one genetic trigger and a specific area of the
thoracic aorta has been definitively established. The
fact that GenTAC diseases are usually multigenetic
and multifactorial in origin argues against one caus-
ative gene or one transcriptional factor being respon-
sible for the disease process in all areas of the thoracic
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aorta. Even in Marfan syndrome, where there is a
global genetic defect of fibrillin maturation not only in
the thoracic aorta but also systemically, there is still a
marked predilection for the aortic root and proximal
ascending aorta, as compared to other aortic seg-
ments.

Therefore, we seek to examine (a) whether the
thoracic aorta develops as one anatomic unit during
one continuous stage, and (b) whether this anatomic
development is under the control of one set of genes.

For the purpose of this discussion, the thoracic
aorta has been divided into four “fields” (Fig. 1)—
corresponding to their embryologic development—as
follows:

● First aortic field: The descending aorta; from
the level of the aortic isthmus (just beyond the
left subclavian artery) to the level of the dia-
phragm.

● Second aortic field: The aortic arch; from the
level of the aortic isthmus to just beyond the
origin of the innominate artery.

● Third aortic field: The ascending aorta; from
the sinotubular junction to just before the ori-
gin of the innominate artery.

● Fourth aortic field: The aortic root; from the
level of the left ventricular outflow tract to the
sino-tubular junction, encompassing the aortic
annulus and valve and the earliest portion of
the aorta— up to the sinotubular junction.

It is important to note that these lines of division do
not mark abrupt or sharp transitions but, rather, areas
where one area “blends” or “tapers” into the next. This
is especially true in the transition between the aortic
root and the ascending aorta, around the level of the
sinotubular junction.

Literature Search Methodology

An extensive search of the medical literature using
PubMed, Medline, and Google® Internet search en-
gines, and the National Institutes of Health/National
Library of Medicine online databases was performed.
Search areas included:

● Developmental anatomy, folding and looping
of the primary heart tube.

● Development of the different segments of the
thoracic aortic tree.

● Genetics of vascular and aortic development
with special focus on segmental effects.

Results

The Early Stages and the First Aortic Field
(Oldest Segments)

Development of the central arterial vasculature (i.e.,
the aortic tree) begins quite early, before the initiation
of circulation. The first signs of cardiovascular devel-
opment begin as early as embryonic day (E) 17, with
vasculogenesis in two areas on the lateral side of the
embryo called “blood islands.” By the early part of the
3rd week (around E19), a pair of vascular elements,
called endocardial tubes, is seen. In the early part of
the 4th week, as the embryo folds, these two lateral
endocardial tubes are brought together in the tho-
racic region where they fuse to form the primitive
heart tube [5–12].

Around the same time of the endocardial tube
development, vascular chords in the mesenchyme of
the dorsal body wall form the paired dorsal aortae,
both craniad and caudad to the embryonic primitive

Figure 1. Approximate lines of division marking the four “aor-
tic fields.”
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heart tube. These dorsal aortae also attach to the
outflow end of this heart tube (Fig. 2).

By E22–E24 (mid-4th week), the primitive heart
tube, in turn, undergoes folding along with the gen-
eralized axial folding of the embryo. During this pro-
cess, the endocardial tubes are drawn—along with
their attachment to the heart tube—into the ventral
aspect of the thorax. At the same time, the part of the
paired dorsal aortae attached to the cranial end of the
heart tube is pulled ventrally, forming a pair of dorso-
ventral “loops,” which are the first aortic arches.

The Second Aortic Field (Aortic Arch)
At approximately the same time (beginning E22),

mesenchymal cells form five pairs of condensation on
either side of the pharyngeal foregut. These five areas
correspond to the primitive vertebrate gill bars or bran-
chial arches. Specifically, these five arches in human
embryos correspond to branchial arches 1, 2, 3, and 6 in
such animals as jawless fish, since the fifth branchial arch
either never develops or appears only for a brief period
of time before regressing. As mesodermal and endoder-
mal components of these arches are added, their role in

human embryos becomes different from that of other
animals, thereby giving rise to structures of the lower
face, neck, and derivatives of the pharyngeal foregut.
Subsequently, these arches in humans are more appro-
priately termed “pharyngeal arches.”

Development of the pharyngeal arches proceeds in a
cranio-caudad order. As a new arch is formed, the aortic
sac contributes an artery for that arch. In addition to the
first aortic arches described above, the remainder of the
vessels associated with the pharyngeal arches (i.e., aortic
arches) develop in the ventral aspect from an expansion
at the cranial end of the truncus arteriosus called the
aortic sac (Fig. 3). Aortic arches 2, 3, 4, and 6 develop
within their corresponding pharyngeal arches between
E26 and E29 (late week 4 to mid-week 5) by a process of
vasculogenesis and angiogenesis strongly influenced by
migration of neural crest-derived ectomesenchymal cells
into these arches.

As the second aortic arch arises by E26, the first
aortic arches regress almost completely, without con-
tributing to any mature intrathoracic vasculature. Dur-
ing their regression (around E28), arches 3 and 4
appear. At this stage (Carnegie Stage 13 or approxi-
mately E28), the paired dorsal aortae fuse from the
level of C7 vertebra to the upper lumbar vertebral
level, or at the takeoff of the umbilical artery branch.
Finally, the sixth aortic arch forms on E29. Meanwhile,
the second aortic arch also regresses without contri-
bution to the intrathoracic vasculature.

Figure 2. The formation of the paired aortas and the begin-
ning of the heart tube, seen from the left dorso-lateral per-
spective. Early 4th week (a) to late 4th week (b).

Figure 3. Arrangement of the aortic arches in relation to the
dorsal aortae and the heart tube.
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By E35 or the end of week 5, segments of the
dorsal aorta connecting the third and fourth arches
disappear on both sides of the body. This leads to the
third arch supplying the head via the cranial extension
of the dorsal aorta. Therefore, the third aortic arch
gives rise to the right and left common carotid arteries
and also the proximal portions of both right and left
internal carotid arteries. It is important to keep in mind
that the distal internal carotid arteries arise from cra-
nial extensions of the dorsal aorta, while the external
carotid arteries develop as outpouching (“sprouts”)
from the common carotid arteries.

At a relatively late stage, by week 7, the fourth and
sixth arches undergo asymmetrical remodeling to pro-
vide the blood supply of the structures in the thoracic
inlet and the upper half of the thorax (both upper
extremities, both lungs, and the dorsal aorta) At this
time, the right-sided dorsal aorta loses its connection
with the fused dorsal aortae and the right sixth aortic
arch. However, it remains connected to the right
fourth arch. It also acquires a branch that later be-
comes the right subclavian artery, as the area where
the right fourth arch connects to the aortic sac be-
comes modified to become the brachiocephalic (in-
nominate) trunk. Meanwhile, the left fourth arch re-
mains connected to the fused dorsal aortae (the early
descending thoracic aortic segment), which, incorpo-
rating a small segment of the aortic sac, later becomes
the bulk of the aortic arch and the most cranial part
of the descending aorta (the area of the aortic isth-
mus). This means that the remainder of the descend-
ing thoracic aorta (from vertebral level T-4 onward) is
derived entirely from the older fused dorsal aortae
without any contribution from the aortic arches or
other segments (Fig. 4).

Development of the sixth aortic arches is dramat-
ically asymmetric. By late week 7, and as the distal
right sixth arch loses its connection with the right
dorsal aorta and disappears, the left sixth arch persists
to later become the ductus arteriosus, connecting to
the distal end of the definitive aortic arch [12–20].

The Third Aortic Field (Ascending Aorta)
After the primitive heart tube is formed, several

sulci appear around early week 4 to divide it into
distinct chambers/structures. The inferior, caudad or
inflow (systemic venous) end describes the sinus ve-
nosus. Next as we move cranially, the next two cham-
bers (atrium and ventricle) are separated by the atrio-

ventricular sulcus. In turn, the ventricle is separated
from the bulbus cordis by the bulboventricular sulcus.
The most cranial part of the bulbus is called the
conotruncus, whose distal part connects to a dilated
expansion called aortic sac, which is continuous with
the first aortic arches, and to which the third, fourth,
and sixth arches also connect as previously discussed.

After the heart tube undergoes folding by week 5,
septation of the ventricle commences. Starting around
the same time, right and left trunco-conal swellings
grow out from the lateral walls of the common ven-
tricular outflow tract. As they meet, these swellings
would grow superiorly and inferiorly inside the out-
flow tract, dividing it in a spiral fashion (Fig. 5). By
week 9, these would have grown into the upper ridge
of the muscular interventricular septum and thus com-
pleted the separation between the aortic and pulmo-
nary outflow tracts [21–26].

The Fourth Aortic Field (Aortic Root)
At the time of emergence of the truncal swellings,

a second pair of tubercles arises at the anterior and
posterior walls of the truncus at the same level. Thus,
the anteriorly located tubercle is situated in the pul-
monary channel after the septation is completed,
while the posteriorly located one will be in the aortic
channel. Toward the end of week 9, and after septa-
tion has been completed, each outflow tract will con-
tain a triangle of tubercles: two from the older lateral
wall tubercles and the third from either the anterior or
posterior wall. In each channel, this triangle will give
rise to the three cusps of the aortic and pulmonary
semilunar valves. As such, the aortic valve and very
proximal part of the ascending aorta (i.e., the aortic
root) develop as a result of the septation of the distal
aspect of the conotruncus, which is an essential com-
ponent of the primitive heart tube [27–32].

Genetic and Molecular Mechanisms
(a) Development of the dorsal aorta is influenced

by multiple genes and signaling pathways. Vascular
endothelial growth factor A (VEGF-A) is activated by
sonic hedge hog (Shh) molecule and, in turn, activates
the Notch signaling pathway through its ligand �-like
�, VGEFR, and phospholipase-C1 enzyme (PLC�-1).
Several other genes are involved, such as Rbm 24;
SMAD5, which are downstream signal regulators of the
TGF-� receptors; Sox-13 gene (Sry-related HMG box);
Sox-18 transcription factor; Hox genes; hypoxia-
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inducible factor 1� (HIF-1�); zinc finger protein genes;
and cyclo-oxygenase-1 (Cox-1)-derived prostaglandins
under the Flil promoter.

In addition, other vertebrate-specific chemokines
such as the C-X-C motif cxcra and its ligand cxcl12b are
involved in development of the lateral dorsal aorta
and are required for the ventral migration of the
endoderm-derived parts. Thus, the anterior part of the
each of the paired lateral dorsal aortae migrates ven-
trally under the influence of Kdrl, cxcra, and Flil. Since
the posterior part of the dorsal aorta lacks Kdrl, it
maintains its anatomic position next to the spine. This
process of ventral migration of the first (anterior) parts
(forerunners of the first aortic arches and the aortic

sac) is also influenced by the increased regulators of
the G protein signaling via S1P1, S1P2, S1P3, and
Fibulin-1 expression at the ventral aspects of the dor-
sal aorta.

Other genes that are primarily involved in the for-
mation of the primary heart tube include MesP1, �-ga-
lactosidase gene (lac-Z), canonical and noncanonical
Wnt signaling of the Frizzled (FZD) gene and
�-catenin, Nk2.5, GATA4, and Tbx2 and Tbx3 [33–41].

(b) Genetic and molecular control of the pharyn-
geal arches is rather complex and involves a number
of concurrent processes. First is the migration of
ectoderm-derived neural crest cells ventrally to the
area of the arch arteries. This is regulated by Tbx1

Figure 4. Spatial relationship of the connections between the paired aortas, aortic arches, and the aortic sac seen in a 3D view
from the front and left (a) and from a ventral projection (b). The contribution of each aortic area to the final configuration of the
thoracic aorta as well as the different origin of each segment is depicted in diagram c.
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which regulates Gbx2 and bone-morphogenic pro-
tein Bmp4 expression in the pharyngeal ectoderm.
Lbx1 homeobox gene and Pax3 are also implicated
in the migration of a specific subpopulation of neu-
ral crest cells. The specific sequential patterning of
the arches is under the influence of multiple factors:
Wnt1 gene is involved in the dorso-ventral pattern-
ing and is also expressed at the time of neural crest
cell migration. Pitx2c, a left-right differentiation
gene, is expressed in the left aortic sac and at the
junction of the aortic sac and branchial arches. It
plays a role in the asymmetric branchial arch devel-
opment. This effect seems to be also influenced by
the difference in blood flow via platelet-derived
growth factor (PDGF), and vascular endothelial
growth factor (VEGF) patterning of the aortic arches,
particularly the fourth arch, involves both Fgf8 and
Tbx1 genes; however, the effect of Fgf8 is limited to
the aortic arch and not the outflow tract (conotrun-
cus). There also seems to be a synergistic effect
between Tbx1 and Chd7 genes. Frizzled (FZD2) gene
appears in the pharyngeal mesenchyme around
E10, then its expression decreases until E18 when it
is only seen in the aorta and pulmonary trunk. Hox
gene homologues are responsible for providing
each segment of the pharyngeal arches with its
positional information, thus acquiring its own iden-
tity. Prx1(MHox) and Prx2(S8) are both nonclustered
homeobox genes involved in the architecture of the

great vessels and the ductus arteriosus. Hoxa genes
are involved especially in the third arch. There is a
synergy between Hoxa1 and Hoxb1 in arch pattern-
ing and generation of the cranial neural crest, while
Hoxa2 and Hoxa3 are involved in the stability of
patterning. The eHAND gene and its dHAND tran-
scription factor are involved in regulating the bran-
chial arch mesenchyme.

Other factors include endothelin (Et-1 or Edn-1) and
its endothelin-converting enzyme (Ece-1) signaling,
which involves G protein-coupled receptors, indepen-
dent of SM22 and lac-Z. Tumor growth factor � (TGF�-1)
via Emad2 and fibronectin influences the fourth arch.
Smad2 expression is not observed in other arch seg-
ments, the ascending or descending aorta. TFAP2B gene
and the encoding transcription factor activating enhanc-
er-binding protein 2� (AP2�) have been linked to persis-
tent ductus arteriosus families and the Char syndrome.
JAG1, GJA 1 (connexin 43), and Ednra genes have been
implicated in Algille syndrome and coarctation of the
aorta, hypoplastic left heart syndrome, familial aortic
aneurysms, and patent ductus arteriosus, respectively.

(c) Outflow Tract and the Conotruncus: Cardiac
neural crest cells migrate from the area of the 4th arch
under the influence of their drivers Wnt1-cre and
Pax3cre, along with histone deacetylase 3 (Hdac3). Tbx1
is required for the growth, alignment and septation of
the outflow tract. It regulates Fgf8 which is involved in
differentiation of the arterial pole. Septation is also
dependent on the expression of Madh6 genes, encod-
ing for Smad6 protein, a signaling protein involved
with the TGF-� superfamily, as well as the Frizzled 2
(FZD2) gene and the HIRA gene on chromosome 22.
Other factors include Bmp2, Nkx2.5, Pitx2, Fibroblast
growth factor (Fgf). Fgf15 is expressed transiently in
the aortic arches (D9.5 to D10), but its absence causes
failure of the aorta to wedge between the tricuspid
and mitral valves. It also affects the proximal outflow
tract at level of its connection with the 6th arch. Prom-
inent levels of tropoelastin (TE) are seen in the aorta
and pulmonary trunk. Thyroid hormone-receptor as-
sociated protein-2 (THARP2) gene mutations have
been implicated in the genesis of transposition of the
great vessels. Defects in the human homologues of
dishevelled gene and �-catenin are associated with
conotruncal defects [42–57].

(d) The aortic root and proximal ascending aorta.
Although this area of the aortic tree carries a high
clinical significance, there is a comparative paucity

Figure 5. Diagram depicting the process of septation of the
left ventricular outflow tract.
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with regard to identification of the genetic and mo-
lecular factors influencing its development and differ-
entiation. So far, the following genes have been im-
plicated in proximal aortic pathology: Notch1 and
Sirtuin1 (SirT1)—a longevity gene limiting Notch1 sig-
naling— have both been associated with bicuspid aor-
tic valve. Abnormalities of chromosomes 45, 13, 18, X,
and 21 have all been linked to various conditions
including Turner syndrome, hypoplastic left heart syn-
drome, and bicuspid aortic valve. FLNA (flamin) gene
and the Ras-mitogen-associated protein kinase signaling
pathway (SHP-2, ki-Ras, RAF-1, and SOS-1) have also been
implicated in the same condition. Conversely, defects or
deletions of the elastin gene on chromosome 7, also in
association with Wnt-Frizzled homologue (FZD9), results
in supravalvular aortic stenosis [58–83].

Discussion

From a developmental standpoint, the thoracic
aorta is not a uniform, homogenous structure. It does
not describe one contiguous anatomic entity, nor do
all its segments develop at the same time. In chrono-
logic terms, the thoracic aortic tree can be divided into
the above-mentioned four “fields” (see above), each
developing at a different stage and from a different
cell population ancestry. As elaborated above, the
oldest part of the thoracic aorta is the descending
aorta distal to the isthmus (T-4 level), with the aortic arch
following in chronological order. The distal ascending
aorta develops next, followed by the aortic root and
proximal ascending aorta. Each of these “aortic fields”
develops under the influence of a distinct set of genes
and signaling molecules and pathways.

In concurrence with the differences between the
thoracic and abdominal aortic regions previously de-
scribed [84], our review further elaborates on the dif-
ferent embryologic origin, genetic influence, and de-
velopmental trajectory of areas with the thoracic aorta
itself. Despite the recent emphasis [85,86] on genetic
and signaling pathways involved in the vascular
smooth muscle development and maturation, which
are seen as exerting a global influence over the entire
vascular tree, a single gene, receptor, or signaling
pathway does not seem to have a generalized effect
on the development of specific segments of the aortic
tree. As an example, TGF-� effect on the smooth
muscle cell gene expression differs depending on the

location of the smooth muscle cell in the aorta. TGF-�
isoforms have different effects on the smooth muscle
transcriptional response in a lineage-dependent man-
ner, with the highest response in lineage of ectoder-
mal origin (the outflow tract and proximal ascending
aorta) versus the lowest response in mesodermal lin-
eage (dorsal aorta). The same applies to other genes
including smooth muscle M �-actin, SM-myosin heavy
chain (MYH-11), SM22� and other SMC proteins (lysyl
oxidase, fibulin 4, fibulin 5), and tropoelastin. This
further highlights the heterogenicity of the genetic
and signaling factors behind the development of each
segment (field) of the thoracic aorta. These findings
also have an increased significance considering the
role of such factors in the regulation of the inflamma-
tory response, atherogenesis, and the extracellular
matrix, all of which contribute to the structural integ-
rity of the aortic wall.

Conclusions

In developmental terms, the thoracic aorta is a
complex, heterogeneous structure. No single gene,
transcription factor, or molecule regulates the entire
process of aortic development. Each segment of the
aorta develops and differentiates under a distinct set
of genetic and transcriptional factors. Therefore, it is
inappropriate to speak of “thoracic aortic aneurysm”
as a monolithic entity, or of any single cause as re-
sponsible for all types and locations of aneurysmal
disease. In addition, this heterogeneity may suggest
that the areas where these different thoracic aortic
segments join are under complex and perhaps con-
flicting genetic, developmental, and regulatory influ-
ence. As such, these areas of juncture (the “weld
joints”) may be at a higher risk for anomalies in de-
velopment, differentiation, connection, or functional
regulation, thereby rendering them more susceptible
to disease processes.

Registry-based research has emerged recently as a
platform for robust investigation utilizing fairly large
amounts of real-world population data organized in
condition-specific databases. Another advantage is
the coordinated efforts between different teams of
researchers across several disciplines. The GenTAC Na-
tional Registry [87] has been established by a collab-
orative effort between the US Department of Health
and Human Services and the National Institutes of
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Health to help healthcare providers better understand
the links between genes and thoracic aortic and car-
diovascular disease. This registry is a repository for
data concerning the genetics, anatomy, pathophysiol-
ogy, and natural history of thoracic aortic conditions.
As such, it is uniquely positioned to organize and
undertake the methodical classification of each indi-
vidual condition, in terms of its genetic etiology and
the transcriptional and signaling pathways and spe-
cific anatomic locale along the thoracic aorta affected.
The identification of which areas of the thoracic aortic
tree are most commonly affected in which genetic
and/or translational or signaling defect would thus
provide a sound scientific basis for formulating and

implementing disease-specific testing, screening, and
therapeutic modalities. This is fundamental to the de-
velopment of evidence-based, specific practice guide-
lines, which will translate into improved effectiveness,
safety, and efficiency of the management of thoracic
aortic disease in this challenging group of patients.
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