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Summary
Objectives: To review past and present challenges and ongoing 
trends in numerical simulation for MRI (Magnetic Resonance 
Imaging) safety evaluation of medical devices. 
Methods: A wide literature review on numerical and analytical 
simulation on simple or complex medical devices in MRI electro-
magnetic fields shows the evolutions through time and a growing 
concern for MRI safety over the years. Major issues and achieve-
ments are described, as well as current trends and perspectives in 
this research field. 
Results: Numerical simulation of medical devices is constantly 
evolving, supported by calculation methods now well-established. 
Implants with simple geometry can often be simulated in a 
computational human model, but one issue remaining today 
is the experimental validation of these human models. A great 
concern is to assess RF heating on implants too complex to be 
traditionally simulated, like pacemaker leads. Thus, ongoing 
researches focus on alternative hybrids methods, both numerical 
and experimental, with for example a transfer function method. 
For the static field and gradient fields, analytical models can 
be used for dimensioning simple implants shapes, but limited 
for complex geometries that cannot be studied with simplifying 
assumptions. 
Conclusions: Numerical simulation is an essential tool for MRI 
safety testing of medical devices. The main issues remain the 
accuracy of simulations compared to real life and the studies of 
complex devices; but as the research field is constantly evolving, 
some promising ideas are now under investigation to take up 
the challenges.
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1   Introduction
Magnetic Resonance Imaging (MRI) is an 
essential imaging modality, as it provides ex-
cellent resolution images without involving 
ionizing radiations. Three fields are used in 
MRI: a very high static field B

0
, typically of 

1.5 Tesla or 3 Tesla for clinical applications, 
a radiofrequency (RF) field with an electric 
component of about 100 V/m RMS, and 
gradient magnetic fields with a slope with 
an order of magnitude of a mT/m and time 
varying with a slew rate of up to 200 T/m/s.

 However, with a growing number of 
MRI machines and MRI scans [1] as well 
as medical devices implantations [2], there 
is a need to assess the safety of MRI scans 
in each case. To this end, the FDA and CE 
provide guidelines and directives to follow 
according to norms as [3, 4]. Thus, there 
are several different norms targeting the 
interactions of medical devices with each 
MRI magnetic field.

Medical devices with conductive parts act 
as antennas for radiofrequency, leading to 
tissue heating or dysfunction of the devices. 
The gradients can as well induce voltage 
and heating, the latter being in general less 
considered than RF-induced heating. When 
moving into the B

0
 field, induced currents 

can occur on the devices, and even when not 
moving the disturbance of the static field can 
create artifacts on the images, putting the 
diagnosis at risk. 

One can compare simulation to ex-
periments in order to validate a model by 
measuring temperature increases around 
a medical device. From the distribution of 

the electrical field and the properties of the 
materials, the SAR (Specific Absorption 
Rate) distribution in W/kg can be obtained 
and used as an input to a thermal simulation.

Numerical simulation is an invaluable 
tool for MRI safety and can help for the de-
velopment of new devices. Indeed, it allows 
to obtain information impossible to get by 
experiments, like the electric field inside a 
human body. It is also a great way to deter-
mine the impact of different tests conditions, 
as this could be time-consuming and costly if 
done on a real MRI machine. This literature 
review is intended to show how numerical 
simulations support MRI safety testing. 

2   Numerical Methods 
Maxwell equations have to be solved to sim-
ulate the interaction of the radiofrequency 
electromagnetic near field with a surface or 
implanted medical device. For a 1.5 Tesla 
MRI scanner, the Larmor frequency is 64 
MHz, which corresponds to a wavelength in 
human tissues of about 40 cm. Therefore, the 
wavelength is about the size of the studied 
object, and full-wave simulations need to 
be run meaning that no approximation on 
Maxwell equations can be made. 

Running a simulation on a numerical 
human phantom is computationally expen-
sive because it leads to a large number of 
discretization cells (for example up to 200 
millions of cells) and a complex distribution 
of material of different electrical properties. 
The most favorable methods for this type of 
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problem, in terms of memory requirements 
and simulation time, are the Finite Difference 
Time Domain [5] or Finite Integration Tech-
nique solved in the time domain. These time 
domain solvers require reasonable memory 
and simulation time compared to the fre-
quency domain solvers (FEM: Finite Element 
Method and MM: Method of Moments) [6]. 

Moreover, these algorithms tend to be 
easily implemented on Graphic Processing 
Units (GPU) allowing a tremendous acceler-
ation of the simulations with a hardware cost 
way below the cost for a cluster of CPUs. 
The main commercial simulation softwares 
available on the market providing a time 
domain solver are CST Microwave Studio™ 
(CST GmbH, Germany), Sim4Life™ (Zu-
rich MedTech AG, Switzerland), Xfdtd™ 
(REMCOM Inc., USA), and FEKO™ (Altair 
Development SA, South Africa). ANSYS™ 
(ANSYS Inc., USA) and COMSOL Multiph-
ysics™ (COMSOL Inc., Sweden) are finite 
element solvers which are mainly used in the 
frequency domain. 

One drawback of these time domain 
solvers is the hexahedral mesh, much less 
flexible than the tetrahedral mesh of a finite 
element solver. However, the possibility of 
using a conformal mesh allows to follow 
the strong curvature of a geometry without 
having to dramatically refine the mesh. This 
is even more important because the smaller 
the mesh step, the smaller the time step of 
the time domain solver. 

After an electromagnetic simulation, the 
SAR distribution obtained is then scaled for 
each real RF pulse of the sequence and can be 
given as an input to the transient heat equation 
solver. For the magneto-static problem, for the 
interaction of the field with complex geome-
tries, the most used method is the FEM. For 
the gradient field for which the frequency is 
a few kHz, approximations can be made on 
the Maxwell equations and the most common 
method used is the FEM [7].

3   Virtual Human Phantoms
Human phantoms evolved tremendously 
since the first need for these in the 1960s 
[8], from an approximate geometric model to 
the very detailed anatomical models existing 

nowadays. These models are obtained from 
medical images from a population of diverse 
age, gender, or morphology, acquired from 
CT or MRI imaging (or even through body 
slices photographs, as performed in the 
Visible Human Project [9]). The components 
of the body are then segmented and a single 
structure in 3D is obtained, with all the 
different organs and structures in the body 
[10] (Figure 1) which can then be attributed 
corresponding dielectric properties. Many 
virtual human phantoms exist and are gath-
ered in an online inventory [11]. 

Two main phantom types exist: voxel 
phantoms and surface phantoms. The 
first ones are voxelled, staircased models, 
whereas the surface models have smoother 
surfaces, can be meshed at one’s convenience 
and have a high resolution that is essential 
when fine body structures are studied [12].

4   Radiofrequency
4.1   RF Coils
For 1.5T and 3 T MRI scanners, the main 
challenge is to model the birdcage which is 
mainly used as the emission coil since the wide 
application of parallel imaging. The principle 
of the resonant structure is described in [13]. 
The issue is to tune it properly to get the wanted 
homogeneous mode of the resonant structure. 
The antenna model can be validated on phan-
toms by mapping of the B1 rotating field.

4.2   Heating on Simple Devices 
Nowadays, many implants, active and pas-
sive, are studied for MRI safety (Figure 2). 
The years 2000 have been a turning point 
with new ASTM (American Society for 

Fig. 1   Human models from the Virtual Population. © IT›IS Foundation (http://www.itis.ethz.ch/).

Fig. 2   a) Stents. “Stent4 fcm” by Frank C. Müller - Own work. Licensed under CC BY-SA 2.5 via Commons. b) Hip prosthesis. Adapted from 
“Hip Replacement” by BruceBlaus - Own work. Licensed under CC BY-SA 4.0 via Commons. c) Pacemaker. “St Jude Medical pacemaker with 
ruler” by Steven Fruitsmaak - self-made, removed from a deceased patient before cremation. Licensed under CC BY 3.0 via Commons. Images 
on Wikipedia (https://www.wikipedia.org/).
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Testing and Materials) norms published 
on the safety of passive device in an MRI 
environment [14], initiating many studies 
worldwide.

Several medical implants have been 
studied through numerical simulations, 
like stents [15-23]. The real CAD model 
can sometimes be modeled [21], showing 
a good correspondence between experi-
mental and numerical results; otherwise 
the geometry is simplified [15, 18], which 
could lead to a different behavior regarding 
RF heating compared to reality. Active-MRI 
stents, meant to ease the follow-up of the 
implantation by MRI imaging, have also 
been simulated [19, 20], showing only a few 
Kelvin temperature increase for realistic 
implants. The rupture of the implant has 
also been discussed as it is a worst case 
scenario, with possible new hot spots.

Brain and head devices are also im-
portant devices regarding MRI safety, 
therefore aneurysm clips inside a human 
head model have been simulated to show 
SAR hotspots at 3T and 7T with different 
orientations of the devices [24] revealing 
the importance of orientation regarding 
RF heating. Numerous studies regarding 
MR safety have also been performed on 
orthopedic prostheses, which become 
very common [2] through in vitro and in 
vivo numerical simulations of RF-induced 
heating on hip prostheses [25, 26] (Figure 
3): thus, there is a compromise to find 
between artifacts reduction and RF safety. 
Moreover, this study also revealed that the 
position of the implanted patient is essen-
tial, as well as the position of an implant 
in a phantom (as in [27-29]). 

External devices have not been forgot-
ten, with SAR studies investigating the safe-
ty of EEG metallic electrodes during MRI 
investigated through numerical simulation 
with a high resolution head model [30], 
concluding on dramatic averaged and peak 
SAR increases depending on the number of 
electrodes. Pin spacing and insertion depth 
[31] have been shown essential in exter-
nal fixation devices safety assessment. A 
metal rod [32], cranial fixation plates [33], 
retinal [34] and dental [35] implants were 
also investigated with regard to RF heating 
without showing significant heating hazard 
in realistic conditions. 

Validation of RF simulations is a current 
topic of interest, through experimental 
validation in phantoms including metallic 
objects [36] or comparison of different solv-
ers, BEM (Boundary Element Method), FIT 
(Finite Integration Technique), FDTD and 
FEM-BEM [37]: this last study revealed the 
BEM solver less accurate than the others. 
Interestingly, current ASTM norm on test-
ing passive implants towards MRI RF heat-
ing [14] only recommends the use of ASTM 
phantoms for numerical simulations and 
experiments. Yet, new test methods taking 
additionally into account computational hu-
man models could possibly be established 
in the future. However, the different struc-
tures and organs of these numerical models 

are characterized by dielectric properties 
gathered in databases such as [38, 39]: as 
these measurements cannot always be done 
in vivo inside a human body, this could 
be a limitation and a crucial stake for the 
accuracy of simulations. Another issue is 
the validation of these human models. One 
way of validating the extracted geometry 
and different dielectric properties would 
be to perform experimental B1 mapping on 
the human body used to build the numerical 
model and to compare this mapping to the 
numerical B1 map. Temperature measure-
ments for humans are limited to surface 
measurements [40], but anatomic models of 
a swine have been validated by comparing 
temperature measurements inside the brain 

Fig. 3   SAR results in numerical simulation on a human model of hip prosthesis. J. Powell et al, Magn Reson Med 2012 Sep;68(3):960-8.
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to thermal simulations [41]. The importance 
of the details when simulating has also been 
recently highlighted [42] by showing that 
even slight changes between two versions 
of an anatomical model have a significant 
impact on numerical RF safety assessment. 
As there is a current problematic to quickly 
find the worst case amongst several device 
configurations, the design of experiments 
methods could become standards in testing 
devices regarding RF heating [43], and the 
future of simulation goes further, through 
the interactions of EM fields with neurons 
[44] and ultra high field SAR studies with 
or without implants [45]. 

4.3   Heating on Complex Devices
Radiofrequency of active implants is a 
major issue as the temperature increase can 
reach several tenths of degrees in a phantom 
for a clinical mean SAR [46]. Considering 
the real magnitude and phase distribution 
of the incident electrical field in the human 
body along the path of the leads of the de-
vices considered is vitally important. The 
field in a phantom, even filled with gel with 
the mean electrical properties of the human 
tissues, has nothing to do with the incident 
field in a real human body made of consid-
erably more heterogeneous structures with 
varying electrical properties. Many studies 
of cables [46, 47, 48] have been made with 
an approximately constant phase, constant 
amplitude incident electrical field parallel 
to the direction of the cable considered. This 
position has often been called “worst case” 
position but it is not considering the magni-
tude and phase distribution of the field. The 
possible phase effects of the incident field 
have been shown [49]. For the constant phase 
distribution the traditional resonance phe-
nomena is observed; whereas for the worst 
phase distribution determined by simulation, 
the longer the cable the higher the heating  
(Figure 4). There is no more resonance 
phenomenon and a long cable that might not 
heat for a constant phase constant amplitude 
might heat for a different phase distribution. 

As this worst phase distribution is not 
reproducible experimentally, it is necessary 
to determine a model to estimate this worst 
case heating or at least the heating for an 

incident f ield typically found in a real 
human body. To reach this goal, running 
a full-wave simulation of the device in a 
human body model could be a solution. 
But unfortunately, some implants such as 
pacemaker leads are made of particularly 
fine structure that cannot be simulated in 
a reasonable time.

The best approach proposed until now 
to estimate the heating of the lead for the 
incident field in the human body is the 
transfer function approach [50]. This trans-
fer function allows to obtain the heating 
at the electrode for any incident field and 
consequently to get the worst case incident 
field phase distribution and to estimate the 
heating for this worst case. It is possible to 
measure an approximation of this transfer 
function by placing the lead of the device 
straight in gel with the mean electrical prop-
erties of human tissues [3, 14, 51]. This is 
only an approximation as the properties of 
the real tissues around the lead influence the 
transfer function as well as the trajectory. A 

calibration coefficient has to be determined 
to predict the actual heating. Finally, using 
a full-wave simulation of a human model to 
determine the incident field, the heating can 
be estimated for a lead placed in the human 
body. Cabot et al. [52] have studied the 
validity of this transfer function approach 
on a simple system that they could actually 
simulate. They compared the result from 
the full-wave simulation with the device in 
the human body and the transfer function 
approach. The results on the maximum 10 
mg averaged SAR at the electrode can be 
more than 30% different between the two 
different methods but it is still the best way 
up to know to estimate the in vivo heating. 
One possibility to improve this estimation 
might be to switch to a transmission line 
model [53] equivalent to a transfer function 
model with its parameters able to be adjust-
ed considering the real tissues surrounding 
the lead. The same method can be applied 
to evaluate the RF-induced voltages on the 
device in vivo. [51]

Fig. 4   Power dissipated at the electrode of a 1.5 mm diameter perfect electrical conducting cable insulated by 100 µm of insulation of relative 
permittivity 4 and embedded in ASTM gel. Full blue curve corresponds to cables subjected to a constant amplitude constant phase tangential 
electrical field. The dashed green curve corresponds to cables subjected to constant amplitude but worst phase distribution.
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5   Static Magnetic Field
5.1   Metallic Implants and B0 
Disturbance 
The presence of a metallic implant creates 
a disturbance of the static field, which leads 
to artifacts making the medical diagnosis 
difficult or even impossible (Figure 5).

To consider the implementation of cor-
rection techniques or magnetic susceptibility 
artifacts attenuation, it is essential to be able 
to calculate very accurately the disturbance of 
the magnetic field generated by the implanted 
metallic object placed in MRI conditions. For 
this purpose, analytical models can be useful 
tools to perform design and optimization stud-
ies on metallic objects with simple geometries 
[54, 55, 56]. But for more complex geome-
tries, an accurate computation of the magnetic 
field is needed, using numerical methods such 
as FEM. These numerical methods allow 
to model magnetic field deformations in 
the diamagnetic and paramagnetic samples 
environment as presented in [57, 58, 59] and 
they can be validated for simple geometries 
[57]. The numerical model was validated by 
comparison with the magnetic field measured 
by the MR gradient echo sequence in [58, 59]. 

5.2   Motion Induced Eddy Currents 
for Moving Implants 
In [60, 61] Lenz effect have been studied on 
moving metallic implant during MRI. Indeed, 
a simple analytical model has been proposed 
to estimate the torque due to interaction be-
tween metallic implants and static magnetic 
field. This analytical approach is based on the 
Lenz’ and Faraday’s laws. Indeed, a rotating 
metal component in a magnetic field produces 
a current due to the change of magnetic flux 
with time. In addition, the changing current 
produces another magnetic field and this new 
field opposes the original field. Laplace’s 
forces oppose the implant’s movement. The 
developed mathematical model has been 
used to calculate the torques produced by 
the Lenz effect on the ring strengthener type 
of valve without considering fluid dynamics. 
The torque and the force calculated analyti-
cally with those obtained on a 3D-numerical 
model have been compared for two simple 

valve shapes a disc and a ring [62], showing 
that the analytical approach is limited to a 
simple shape such as solid discs but cannot be 
extended to a complex shape such as a ring.

6   Gradient Magnetic Fields
The gradient coils of an MRI generate time 
varying magnetic fields with kilohertz fre-
quency. These varying magnetic fields result 
in the generation of induced electric fields on 
metallic implantable medical devices during 
the MR process that results in the appearance 
of eddy currents which can cause heating ef-
fects. These gradient fields can also generate 
induced voltages on the electronics of active 
implanted medical devices.

6.1   Induced Voltage
The induced voltage generated by the time 
varying field can be modeled using numer-

ical multi-physics software based on FEM 
as described in [63]. In this work, an active 
implant pump was studied through simula-
tions validated by a set of experiments, and 
it was proved that the proposed model can 
be a tool for the design of critical electronic 
systems to ensure MRI safety. 

However, these numerical methods are 
time-consuming. To tackle this issue, a 
mathematical model can allow to calculate 
the induced voltage for simple geometries. 
Simplif ied analytical expressions were 
proposed [64] to calculate the electric field 
induced by a linear gradient field for an ac-
tive implanted medical device. In this study, 
it is assumed that the time-varying field is 
formed by infinitely long cylindrical gradient 
coil. The induced voltage on the implanted 
lead can be calculated by integrating the 
known electric field E over the length of the 
lead of the active implant. A comparison 
to experimental results showed that the in-
duced voltage on the active implant can be 
determined by using these expressions with 
a relative error about 10%.

Fig. 5   MRI images in three orthogonal planes (sagittal, coronal, and axial) in a 1.5 Tesla scanner without implant (first and third column) and 
with implant (second and fourth column) for one spin-echo and one gradient-echo sequence, respectively. Jansson et al., Medical Devices: Evidence 
and Research: 8 413–423, 2015.
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6.2   Induced Heating Effect
In [65], a hybrid model has been proposed 
to estimate the heating effect on patient im-
planted with metallic hip prostheses within 
an MRI-LINAC (linear particle accelerator) 
system. Indeed, two noncommercial codes for 
voxel based human models have been devel-
oped by the authors. Then, the electromag-
netic field problem has been solved by using 
a hybrid finite element–boundary technique 
implemented in a GPU system. The heating 
effect due to the electromagnetic exposure 
is then estimated by using a finite element 
code. The simulations have been performed 
for a set of situations considering different 
possible body arrangements (Figure 6). Re-
sults showed a maximum increase of 2.5°C. 

7   Conclusion 
MRI safety evaluations for medical devices 
evolved tremendously over the past decades, 
thanks to a global concern regarding this 
issue. Progresses in computer performances 
allowed numerical simulation to be more 
accessible and even to become mandatory for 
safety testing of devices in MRI. Nowadays, 
implants with a simple geometry can be sim-
ulated accurately, in a homogeneous phantom 
or a computational human model. Still, some 
questions remain about the latter: currently, the 
validity of human models have not been fully 
assessed with regard to a real human body. 
B1 mapping could be used to ensure the nu-
merical and real human models are correlated 
enough. Moreover, human bodies being very 
heterogeneous and varying from one person to 
another, the sets of virtual models do no cover 
all the possibilities. Researches are relatively 
more recent regarding more complex implants, 
which are difficult or impossible to simulate 
because of their geometry. 

Ongoing studies focus on establishing a 
valid mathematical model reproducing the 
behavior of these implants, such as pacemaker 
leads, towards RF induced heating. Regarding 
the gradients and the static field, if analytical 
models can be fast and accurate in most simple 
cases, numerical models are very helpful when 
simplifying assumptions cannot be used. 

Safety of medical devices in MRI still 
involves matters of great importance for 

the future, but numerical simulation has the 
potential to face them: it is perhaps one of 
the keys to safe MRI scans for everyone. 
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