Successful treatment of a necrotizing, multi-resistant bacterial pyoderma in a python with cold plasma therapy

Christoph J. Klinger1; Berrett Dengler1; Thomas Bauer2; Ralf S. Mueller1

1Small Animal Medicine Clinic, Centre for Clinical Veterinary Medicine, Ludwig-Maximilian University, Munich, Germany;
2Veterinary practice, Munich, Germany

Keywords
Non-thermal plasma, atmospheric pressure plasma, dermatology, reptiles, Stenotrophomonas maltophilia, Xanthomonas

Summary
A 4-year-old ball python was presented 3 weeks after multiple bite wounds from a prey rat with large skin lesions, a concurrent deep bacterial pyoderma and clinical signs for septicemia, including neurological symptoms. Affected tissue separated from the underlying muscular layer revealing parts of the muscles. Clinical examination and cytology was consistent with bacterial pyoderma; septicemia was an additional tentative clinical diagnosis. Empirical lincomycin and marbofloxacin (bacterial culture revealed a multi-resistant Stenotrophomonas maltophilia susceptible to fluoroquinolones) treatment improved the patient’s general condition but skin wounds deteriorated to multifocal eschars with intracellular rods. Further diagnostics were limited for financial reasons, euthanasia was considered. Cold atmospheric pressure plasma (CAPP) therapy was performed six times in 4 weeks. Within 1 week, inflammatory symptoms resolved. Re-epithelialization was completed few weeks later. In the following year, the snake sloughed three times without any signs of dysecdysis. CAPP therapy may offer a viable treatment option for bacterial (especially multi-resistant) pyoderma and necrotizing dermatitis in snakes.

Schlüsselwörter
Kaltplasma, Atmosphärendruckplasma, Dermatologie, Reptilien, Stenotrophomonas maltophilia, Xanthomonas

Zusammenfassung

Introduction

Ball pythons (Python regius, SHAW 1802) are an oviparous, non-venomous constrictor snake species inhabiting sub-Saharan Africa (36). Being amongst the smallest African giant snakes and comparatively docile, unless threatened, they make popular pets. Bacterial infections are a common problem in reptiles (6) and are commonly caused by Gram-negative rods (31). Some of those bacteria – regardless of the host – bear a high potential to develop antibiotic resistance even without prior antibiotic usage (29, 30). In many cases systemic antibacterial therapy is needed, as topical medication or disinfectant bathing is either poorly tolerated, inef-
Cold plasma therapy in a ball python

C. J. Klinger et al.

Stenotrophomonas maltophilia is an ubiquitous, aerobic, Gram-negative, rod-shaped bacterium of the family Xanthomonadaceae, which has been reported to induce severe septicemic infections in reptiles (1, 11) and commonly shows multi-drug resistance (6).

Cold atmospheric pressure plasma (CAPP) is a relatively new and innovative therapeutic option with physical antimicrobial activity and wound healing properties (37). It can be considered as a gas mixture of electrons and ions in combination with neutral and highly reactive molecules such as free radicals, peroxide and UV-photons (9, 20). CAPP inactivates bacteria regardless of their resistance to antimicrobial agents, such as methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa (2) and also affects bacterial biofilms, bacteriophages, and bacterial and fungal spores (18, 35).

This case report describes a ball python infected with a multi-resistant Stenotrophomonas maltophilia successfully treated with CAPP in combination with local therapy. To the best of the authors’ knowledge, this is the first case report of CAPP therapy for a multi-drug resistant bacterial infection in a reptile.

Case description

History and clinical presentation

A female, 1.5 m long, 4-year-old ball python was presented due to anorexia, lethargy and nine large and multiple small, partially ulcerated skin areas with puncture wounds all over the body. The owner reported regularly placing live rats inside the vivarium as a food source. Three weeks prior to this first presentation to the reptile specialist, the owner observed the prey rat causing multiple bite wounds, when the python darted for it. The snake did not kill and consume this rat, which was subsequently removed. The owner confirmed there was no contactable heat source and no sharp objects within the vivarium which could have caused the skin wounds.

The snake was underweight, did not resist the general examination and displayed an opisthotonus. When positioned in dorsal recumbency, the patient showed no compensating movements to right itself. Ventrally, multifocal small spots of subcutaneous hemorrhage were noted. The size of the wounds ranged from 1 cm² up to 15 x 7 cm.

Diagnostic approach, treatment and outcome

Cytology of specimens sampled directly from small ulcers revealed heterophilic and intracellular rod-shaped bacteria consistent with bacterial pyoderma. Petechia and neurological signs were suggestive for septicemia. The patient was hospitalized and swabs taken from the muscle surface underneath larger skin wounds were sent to a commercial laboratory for bacteriology and susceptibility testing. Due to financial constraints, the owner refused any further tests.

Intramuscular injections of marbofloxacin (Marbocyl® 2%, Ve-toquinol, Magny-Vernois, France) at 4 mg/kg/d (initially 8 mg/kg once) and lincomycin (Lincobel® 113.4 mg/ml, bela-pharm GmbH & Co. KG, Vechta, Germany) at 10 mg/kg/d were initiated empirically in combination with subcutaneous infusion with a physiological electrolyte solution (Ringer-Lactat-Lösung nach Hartmann®, B. Braun Vet Care, Melsungen, Germany) at 10 ml/kg/d. Concurrent topical silver-sulfadiazine creme (Flammazine®-1%, Sinclair Pharma GmbH, Frankfurt/Main, Germany) was applied.
twice daily after the snake had been bathed in highly concentrated black tea (cooled down to 25 °C). The culture revealed an abundant but high amount of *Stenotrophomonas maltophilia* resistant to all antibiotics except for fluoroquinolones, trimethoprimsulfonamides and chloramphenicol/florfenicol. Both systemic and topical therapy was continued for 1 week and a guarded prognosis was given.

Ten days later, the patient had improved in its general condition, and was now able to right itself when turned on its back. However, the skin wounds had worsened with multifocal full-thickness skin eschar and sloughing, revealing muscles (Fig. 1). The patient was referred to dermatology for an alternative to euthanasia. Cytology from the muscle surface revealed large numbers of heterophils and intracellular rods. No further tests were allowed by the owner. Treatment with CAPP (KINPen VET®; neoplas GmbH, Greifswald, Germany) was proposed for disinfection and induction of wound healing. This was performed for 15 s/cm² with a jet-wound distance of 10 mm three times weekly for 2 weeks (Fig. 2). The topical silver-sulfadiazine therapy was continued as supportive treatment following CAPP; tea baths and systemic antibiotics were discontinued.

After 7 days, granulation tissue was visible at the wound edges and on cytology, bacteria were now absent. After 14 days, the necrotic areas had decreased in size by approximately 50%, with no further tissue sloughing. CAPP therapy was discontinued after another 2 weeks of once weekly administration. Two months later, all skin lesions had completely resolved, leaving only residual scars which did not create any problems with dysecdysis in the subsequent 12 months (Fig. 3).

Discussion

Feeding living prey carries risks, as prey animals oftentimes defend themselves by biting or scratching (4). It is a controversial issue even amongst experts due to the possible injuries to the snake (4) and ethical concerns for the captive prey (German Law, Art. 4 Abs. 3 TschV). Changing the food source to killed or frozen-thawed was recommended to the owner.

The owner observed direct bites by the prey rat and the wounds at the initial presentation to the referring veterinarian, a reptile specialist, were considered consistent with deep puncture wounds. Captive ball pythons frequently develop anorexia if stressed and can fast for months, particularly during the breeding season, before ecdysis and in cases of environmental changes within the vivarium, illness or external stress factors (39). The vivarium of this python was however designed very precisely and no risk factors for anorexia or skin injuries were noted. Possible sharp objects within the vivarium or skin necrosis due to a heat source/environmental burn were excluded historically.

Very few pharmacokinetic studies have been conducted in reptiles and antibiotic doses are frequently based on empirical experience and anecdotal information (23). Fluoroquinolones are regularly used to treat bacterial infections in snakes despite the limited pharmacokinetic data available (40). They are effective against most aerobic bacteria in reptiles, and distribute to all tissue including bone and inflammatory tissues (27). Adverse effects to fluoroquinolones are very uncommon in reptiles, though pain and inflammation can occur in infected tissues.

Fig. 2 Process of cold plasma therapy (necrotic skin area not visible due to angle of photo). Each square centimeter was treated for 15 seconds.

Fig. 3 Condition of the patient after 4 months. Despite scar tissue persisted on the former wounds, the snake has shown no symptoms of dysecdysis.
flammation at the injection site are reported (25). Almost all the anaerobes isolated from snakes were sensitive to macrolide antibiotics (34).

Multi-resistant bacteria are an increasing worldwide problem (7), at least partially due to frequent antibiotic usage (17). Antibiogram stewardship recommendations include an initial single-antibiotic approach (5, 13). However, in this patient septicemia with neurologic signs and high risk of imminent death made aerobic as well as anaerobic bacteria plausible causative agents. With no available single product licensed for intramuscular injections targeting both bacteria types, a double-antibiotic approach was started prior to the susceptibility test results.

Stenotrophomonas (S.) maltophilia can create devastating infections and even septicemia in immunocompromised patients (1) and has been reported to induce severe infections in reptiles (11), but can be a part of the normal oral bacterial flora of snakes (12). It remains unknown whether the bacterial infection originated from the prey rat bite or was due to self-trauma by the python during the fight with the rat.

It could not be elucidated, if *S. maltophilia* caused both the systemic and neurologic signs or just the skin ulcers as recommended defining tests including blood cultures, complete blood count, serum biochemistry, deep tissue cultures, and histopathology were declined by the owner due to financial constraints. As the skin wounds deteriorated despite improvement in the general condition, a lack of antimicrobial penetration by the systemic antibiotics possibly due to tissue necrosis and/or bacterial resistance to the topicals was suspected. A fungal infection could not be ruled out, as a fungal culture could not be initiated. In fungal infections, a histiocytic inflammation would have been expected and no fungal elements were identified on cytology. Thus, the sudden onset of the disease in combination with the heterophilic inflammation and the bacteria identified rendered a bacterial infection more likely. Viral infections are another possible cause for neurologic signs in giant snakes. However, the patient was kept as a sole pet for 3 years and with the timely association of the skin infection to the bite wounds, a bacterial pathogen appeared more likely, especially in light of the clinical outcome. In addition, there were no intracytoplasmic or intranuclear inclusion bodies visible on skin cytology. Virus antibody as well as spinal fluid testing was not permitted due to financial contrains.

Conclusion for practice

Non-thermal ionized plasma therapy may offer a viable treatment option for bacterial pyodermia and necrotizing dermatitis in snakes, especially in cases of multi-resistant bacterial infections.

References

