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Abstract: Panel sequencing is a practical option in genetic diagnosis. Enrichment and library 

preparation steps are critical in the diagnostic setting. In order to test the value of HaloPlex 

technology in diagnosis, we designed a custom oncogenetic panel including 62 genes. The procedure 

was tested on a training set of 71 controls and then blindly validated on 48 consecutive hereditary 

breast/ovarian cancer (HBOC) patients tested negative for BRCA1/2 mutation. Libraries were 

sequenced on HiSeq2500 and data were analysed with our academic bioinformatics pipeline. Point 

mutations were detected using Varscan2, median size indels were detected using Pindel and large 

genomic rearrangements (LGR) were detected by DESeq. Proper coverage was obtained. However, 

highly variable read depth was observed within genes. Excluding pseudogene analysis, all point 

mutations were detected on the training set. All indels were also detected using Pindel. On the other 
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hand, DESeq allowed LGR detection but with poor specificity, preventing its use in diagnostics. 

Mutations were detected in 8% of BRCA1/2-negative HBOC cases. HaloPlex technology appears to 

be an efficient and promising solution for gene panel diagnostics. Data analysis remains a major 

challenge and geneticists should enhance their bioinformatics knowledge in order to ensure good 

quality diagnostic results. 

Keywords: HaloPlex; cancer; predisposition; genetic diagnosis; next generation sequencing; gene 

panel 

 

1. Introduction 

Individuals with hereditary predispositions to cancer are at an increased risk of developing 

specific cancers compared to the general population. Patients are usually evaluated on the basis of 

family history and/or individual criteria (age at diagnosis, tumor histology) followed by cascade 

testing for the most likely genes. However, in negative cases, with a complex family history and 

genetically heterogeneous diseases, cascade testing by Sanger sequencing appears to be 

time-consuming and expensive. With constant progress in next-generation sequencing (NGS) 

technologies and corresponding decreased costs, many diagnostic laboratories have been shifting 

from Sanger sequencing platforms to higher throughput NGS platforms [1–3]. NGS technologies 

now allow simultaneous analysis of multiple susceptibility genes for series of patients by gene panel 

sequencing. Typically, hereditary cancer panels include highly penetrant as well as moderately 

penetrant genes with known clinical utility and for which clinical guidelines concerning prevention 

or early detection have been established [4]. These genes are called ―actionable genes‖. The gene 

panel approach has obvious advantages compared to Sanger sequencing: increased throughput, 

decreased delays, optimized molecular diagnosis in patients with a family history suggestive of an 

inherited susceptibility to cancer. 

The need for high-throughput technologies is also increased by the development of personalized 

medicine, which tries to use targeted therapies with improved selectivity and efficacy in preselected 

patient cohorts based on gene analysis. One example of molecularly targeted therapy is inhibition of 

poly (ADP-ribose) polymerase (PARP) enzyme by small molecule inhibitors in tumors harboring 

BRCA1 or BRCA2 mutations. Treatments such as olaparib (which has recently been approved for 

ovarian cancer therapy by the FDA and European commission in patients with platinum-sensitive, 

recurrent, high-grade serous ovarian cancer with BRCA1 or BRCA2 mutations) [5,6] forces 

diagnostic laboratories to provide even more rapid diagnostic delivery.  

Up until recently, library preparation time really constituted the rate-limiting step in this 

approach, with the exception of multiplex PCR which is fast but associated with other issues that 

increase with target size (number of tubes, large genomic rearrangement analysis, and coverage). It is 

critical to find a method which is sufficiently rapid to allow a suitable waiting time for patients, 

while at the same time allowing large gene panel enrichment with high diagnostic quality criteria in 

terms of sensitivity and specificity.  

We have consequently designed and tested a HaloPlex (Agilent, Santa Clara, USA) custom gene 

panel including all 62 genes studied in our laboratory that are involved or suspected to be involved in 

several diseases: Hereditary Breast and Ovarian Cancer (HBOC), digestive cancer, retinoblastoma, 
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DICER1 syndrome, ataxia-telangectasia, Fanconi anemia and Bloom syndrome. This panel was 

composed of actionable genes, moderately penetrant genes but also ―research‖ genes i.e., with no 

known clinical validity. Libraries were then sequenced on a HiSeq (Illumina, San Diego, USA) 

sequencer and data were analysed with our academic bioinformatics pipeline and, in some cases, 

with the NextGENe software (SoftGenetics, State College, USA). The procedure was first tested on a 

training set of 71 challenging controls samples and then blindly validated on 48 samples. HaloPlex 

technology was found to be compatible with diagnostic requirements 

2. Materials and Methods 

2.1. Patients 

All patients attended an interview with a geneticist and a genetic counsellor in a family cancer 

clinic in Institut Curie, Paris, France. Genetic testing was proposed on the basis of the patient’s 

personal history and/or family history in relation to various clinical presentations: breast and ovarian 

cancer, digestive cancer, retinoblastoma, DICER1 syndrome, ataxia-telangectasia, Fanconi anemia 

and Bloom syndrome. Informed consent was obtained from all patients or their legal guardians. DNA 

was extracted from leucocytes using the Quickgene 610-L automated system (FujiFilm, Tokyo, 

Japan) according to the manufacturer’s instructions. A series of 119 patients was studied: 71 as a 

training set and 48 as a diagnostic set. 

The training set was composed of 71 patients previously Sanger sequenced (or by multiplex 

ligation-dependent probe amplification analysed—MLPA) and harboring 67 representative variations 

and 98 polymorphisms were used as controls. To adequately address diagnostic issues, this training 

set was composed of difficult cases (indels, large rearrangements) and at least, one mutation for each 

gene concerned by our clinical diagnostic activity. 

The diagnostic set included 48 consecutive cases from our family cancer clinics who had been 

previously tested negative for BRCA1/2 mutations and at high risk of cancer genetic predisposition 

based on personal or family cancer history. 

2.2. Library preparation and sequencing 

A custom 62-genes panel was created using Suredesign software (Agilent, Santa Clara, USA) 

(Table 1). Region of interest (ROI) was defined as coding sequences and flanking splice consensus 

sequences from genes of interest (padding: −20/+10 bp) with 13,266 different amplicons [7]. Three 

successive designs were necessary to obtain satisfactory coverage of the complete ROI, especially 

for BRCA1 and BRCA2 coding sequences. Additional genes were introduced in the course of these 

successive designs (Table 1). Target enrichment was performed according to the manufacturer’s 

instructions. Briefly, DNAs were fragmented using a cocktail of 8 restriction enzymes, and denatured. 

A probe library was added and hybridized to targeted fragments. Each probe was an oligonucleotide 

designed to hybridize to both ends of a targeted DNA restriction fragment, thereby guiding the 

targeted fragments to form circular DNA molecules. The probe also contained a method-specific 

sequencing motif and a sample barcode, both incorporated during circularization. HaloPlex probes 

are biotinylated and targeted fragments can therefore be retrieved with magnetic streptavidin beads. 

The circular molecules were then closed by ligation, ensuring that only perfectly hybridized 
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fragments were circularized. Only circular DNA targets are amplified, providing an enriched and 

bar-coded amplification product that is ready for sequencing. All libraries of target-enriched pooled 

DNA were analysed on LabChip (Caliper, PerkinElmer, Waltham, MA, USA) to assess successful 

enrichment, demonstrating a smear of amplicons ranging from 50 bp to 500–600 bp with a mean at 

200 bp. Following enrichment, samples were sequenced on a HiSeq2500 (Illumina) with the fast 

module using the 150 paired-end chemistry according to the manufacturer’s instructions. 

Table 1. Description of the 62-gene panel. 

Name Panel design version at 

gene inclusion  

V1 mean 

coverage (%) 

V2 mean 

coverage (%) 

V3 mean 

coverage (%) 

APC v1 99.86 99.85 100.00 

ATM v1 98.94 99.69 99.99 

ATR v1 99.83 99.12 99.95 

BAP1 v1 100 100.00 100.00 

BARD1 v1 100 100.00 100.00 

BLM v1 99.48 99.81 99.99 

BRCA1 v1 99.4 99.52 99.79 

BRCA2 v1 99.58 99.91 100.00 

BRIP1 v1 99.97 99.94 100.00 

CDH1 v1 99.98 99.99 100.00 

CHEK2 v1 94.03 99.73 100.00 

DICER1 v1 99.98 99.98 100.00 

EPCAM v1 100 100.00 100.00 

FANCA v1 99.9 99.92 99.93 

FANCB v1 99.55 99.20 100.00 

FANCC v1 100 100.00 100.00 

FANCE v1 100 99.92 100.00 

FANCF v1 100 100.00 100.00 

FANCG v1 99.39 99.95 100.00 

FANCI v1 99.89 99.94 100.00 

FANCL v1 99.93 97.26 100.00 

FANCM v1 99.9 99.62 99.96 

MET v1 100 99.92 100.00 

MLH1 v1 100 100.00 100.00 

MRE11A v1 97.8 99.99 99.96 

MSH2 v1 98.11 99.82 100.00 

MSH6 v1 100 99.97 100.00 

MUTYH v1 100 99.92 99.92 

PALB2 v1 100 100.00 100.00 

NBN v1 99.73 99.29 100.00 

RAD50 v1 100 99.96 100.00 

RAD51B v1 94.27 100.00 100.00 

RAD51C v1 98.82 99.01 100.00 
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RAD51D v1 99.94 100.00 100.00 

RB1 v1 96.44 97.03 95.51 

SLX4 v1 99.85 99.94 100.00 

SMARCB1 v1 100 100.00 100.00 

STK11 v1 98.6 100.00 100.00 

WT1 v1 95.81 96.81 98.84 

XRCC2 v1 100 100.00 100.00 

XRCC3 v1 100 100.00 100.00 

ERCC4 v2 - 99.58 100.00 

HELQ v2 - 99.06 100.00 

MED4 v2 - 100.00 100.00 

MDM2 v2 - 100.00 100.00 

BMPR1A v3 - - 100.00 

CDKN2A v3 - - 100.00 

FAN1 v3 - - 100.00 

POLD1 v3 - - 99.98 

POLE v3 - - 100.00 

PTEN v3 - - 99.01 

RINT1 v3 - - 99.98 

SMAD4 v3 - - 100.00 

TP53 v3 - - 100.00 

Three different versions with an increased number of genes were designed: V1, V2, V3.  

Mean coverage observed for the ROI at minimum 30X are reported for each gene. FANCD2 and PMS2 are not reported 

as analysis was not reliable (see text for details). 

2.3. Bioinformatics analysis 

Both commercial (NextGENe, SoftGenetics) and academic solutions were used as described 

below. However, NextGENe® v.2.3.1 (SoftGenetics, State College, PA, USA) was available to 

analyse 2/3 of the training set, making comparison between academic and commercial solutions 

difficult. Default settings for paired-end Illumina data were used to filter and trim the raw data. The 

adapter sequence was trimmed at the same time according to a text file. Parameters for alignment and 

mutation detection were: paired read analysis, ―Allowable Mismatched bases‖ option set to 0, 

―Allowable Ambiguous Alignments set to 50, 35 bp seed, 7 bases move step, 85% matching base 

percentage, ―detect large indels‖ option on, 15% mutation percentage. 

In addition, we designed our own academic bioinformatics pipeline and applied it on all patients. 

Index demultiplexing and generation of raw data were performed with Illumina Consensus 

Assessment of Sequence and Variation (CASAVA) software (v1.8.2, Illumina, San Diego, CA). 

Adapter trimming was performed with SeqPrep software (v1.0) (https://github.com/jstjohn/SeqPrep). 

Mapping was performed with Bowtie2 (v2.1.0) [8] on human hg19 reference genome using the 

sensitive mode. Insert size for valid paired-end alignments was set between 0 and 600 bp. Data were 

then processed using MPileup (Samtools, v0.1.18) [9] targeted on our region of interest with the 

following parameters: Do not perform Genotype Likelihood Computation, Do not skip anomalous 

read pairs in variant calling (-A), Disable probabilistic realignment for the computation of base 
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alignment quality (-B), no mapping quality adjustment for reads containing excessive mismatches 

(–C 0), Max per-BAM depth was set to 10,000 (-d 10000) to avoid read downsampling. Minimum 

mapping quality for an alignment to be used was set to 0 and minimum base quality for a base to be 

considered was set to 12. Point mutation calling was performed using VarScan2 [10] with the 

following parameters: only bases covered by at least 30 reads are considered, 2 of which must carry 

the alternative variant. The minimum allelic ratio for a variant to be reported was set to 15%. Variants 

supported by more than 90% of reads on the same strand were included in the analysis. Variant 

annotation was performed using Annovar (25/10/2013) [11]. Statistics on the ROI coverage were 

established using two metrics: the percentage of bases covered by at least 30 reads specified by 

isoform for each gene and the number and localization of bases covered by less than 30 reads. 

Indels of intermediate size (5 bp and larger) were called using Pindel (v0.2.5) [12] with already 

aligned data. Pindel first extracts reads indicating a potential or already existing indel and uses this 

position as an anchor, it then splits reads (as well as their potential unmapped counterpart) into 

several pieces to try to find a better alignment including an indel. Pindel was run with default 

parameters apart from the following two parameters: in this setting of very deep sequencing, the 

minimum number of reads supporting an event to be reported was set to 10 and the ―insert-size‖ 

(defined as the length of sequence between the paired-end adapters) was set to 500bp. Only variants 

with an allelic ratio greater than 5% were reported.  

To manage large genomic rearrangements (LGR) detection, the R package DESeq [13] was 

used to normalize read counts and estimate fold change per sample and window, fitting a generalized 

linear model to these normalized counts. In order to distinguish a gene deletion on the X 

chromosome in a woman from a man with only one copy, the patient’s gender was taken into 

account for genes located on the X chromosome, dividing the analysis into two sub-analyses. Fold 

changes thresholds were then estimated on the basis of validated data and were used to highlight 

potential events. 

Analysis filters and pipeline were established and tested using the training set and were then 

used to call variants in the diagnostic set. All mutations are reported according to the Human 

Genome Variation Society (HGVS) guidelines. References of coding sequences used for each gene 

are reported in supplementary Table 1. 

2.4. Sanger sequencing confirmation 

All point mutations passing these filters in the diagnostic set were confirmed by Sanger 

sequencing using Big Dye Terminator on the ABI 3500XL (Life Technologies, Carlsbad, USA). No 

LGR needed to be confirmed in the diagnostic set (none were detected). 

2.5. Data availability 

All detected mutations were registered to relevant data bases such as UMD data base for breast 

or colon cancers or LOVD for Fanconi anemia. Sequencing data and reads have already been 

provided to a national NGS consortium (INCa DGOS/NGS network). At the end of the project, data 

sould be made available for global community.  
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3. Results 

We studied DNA samples from 119 different patients: 71 previously characterized samples 

were used to evaluate library preparation and define the appropriate settings for the bioinformatics 

analysis. Forty-eight clinical samples referred for testing were analysed. Three separate runs 

containing either 44 or 43 samples were performed on the HiSeq 2500 Sequencing System with the 

150 bp paired end sequencing module. Each HiSeq run produced an average of 550 million reads. 

Run time was 40 hours. The average on-target ratio was 82%. An average of 200 variants were called 

for each patient i.e. 3 variants per gene. 

3.1. Read depth and coverage 

No significant decrease in coverage was observed between the three design versions (Table 1) 

and 99.4% of the target was covered by at least 100X. The average read depth was 3720X with 

marked heterogeneity between the different genes of our panel with a seven-fold difference between 

―poor performers‖ (e.g. MDM2 and XRCC2) and ―good performers‖ (e.g. FANCA and MUTYH) 

(Figure 1). Read depth also varies considerably in different parts of the same gene. In BRCA1, for 

example, read depth can easily vary from less than 100X (minimum value: 1X) to more than 6000X 

(maximum value: 10013X) (Figure 2). 

3.2. Training set 

The 165 variants present in the training set had been previously identified by Sanger sequencing 

or MLPA. Sixty-seven mutations had a potential or demonstrated biological effect (Table 2) and 98 

were polymorphisms (Supplementary Table S1). Library preparation using HaloPlex technology was 

successful for all but 1 of the 71 DNA samples of the training set. 

All causative point mutations and polymorphisms were identified using the Varscan2 bioinformatics 

pipeline (Supplementary Table S1). 

On a large set of indels ranging from 1 to 50 bp, rearrangements longer than 20 bp could not be 

detected by either Varscan or NextGENe. The first missed indel was a 23 bp duplication in the RB1 

gene (g.2113_2135dup, p.Pro26Argfs*47) and the second missed indel was a 50 bp insertion in the 

BRCA1 gene (c.3729_3730ins50). Pindel with read alignment was therefore used and all indels were 

detected. 

The allelic ratios usually observed with constitutive heterozygous mutations are close to 0.50, 

but, in this training set, several true constitutive heterozygous mutations were detected with allelic 

ratios ranging from 0.2 to 0.67 (Table 2). Similarly, several real constitutive heterozygous indels 

were detected with allelic ratios ranging from 0.18 to 0.8 (Table 2). 

A high rate of false recurrent SNVs was observed in our results (recurrence ranging from 25 to 

100% of samples and allelic ratios ranging from 1 to 20%). They were always located at the read 

extremities (in either the forward or reverse reads). Read trimming was then used to avoid these 

recurrent false positives (see Discussion).  

Varscan2, Pindel and NextGENe were unable to detect LGRs. The addition of DESeq in our 

pipeline allowed the detection of all LGRs, but with poor specificity, preventing its use in diagnostics. 

For example, in BRCA1 LGR analysis, we observed 9 false duplications and 10 false deletions in the 
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first training run of 44 samples in addition to the only true BRCA1 LGR present in this set (exons 3 

to 8 duplication). 

3.3. Diagnostic set 

Gene panel analysis was performed for 48 HBOC patients without BRCA1/2 mutation. 

Mutations were detected in 4 (8%) patients in ATM, BRCA2, FANCA, FANCM and PALB2 genes; 

the FANCM and PALB2 mutations were present in the same patient. Likely deleterious variants were 

also detected in 4 (8%) patients in BLM, BRIP1, CHEK2, FANCG and NBN; the BRIP1 and CHEK2 

variants were present in the same patient (Table 3). 

Two RB1 mutations in the 131 patients were missed by NextGENe, but this problem was 

resolved by modifying the ―allowable mismatch base‖ from 0 to 2. 

4. Discussion 

We describe and validate a HaloPlex-based diagnostic pipeline applied to a gene panel. Some 

technical comments and guidelines for implementation and use based on our experience are 

discussed below. 

The wet lab part of the protocol is easy to implement, as it consists of kits that are easy to 

handle by any molecular biology laboratory. According to the manufacturer, major protocol steps can 

be automated. The HaloPlex target enrichment system was able to very rapidly capture and sequence 

the genomic regions of interest of 62 genes (4 days for a 44-sample library preparation). 

DNA capture is performed by DNA fragment circularization with custom probes after 

enzymatic fragmentation (eight different restriction enzymes). Enrichment by circularization 

considerably facilitates library preparation for NGS, as sequencing primers can be added to the 

circularization probe, thereby eliminating the need for any further library preparation steps [14]. This 

technology achieves high specificity and output for library preparation from small DNA quantities. 

As a result it could be relevant for PARP inhibitor therapies as BRCA sequencing is also performed 

with DNA extracted from FFPE materials. Nevertheless, optimization would be needed. 

However, using Haloplex technology also introduces several biases, especially concerning the 

homogeneity of gene coverage. These two aspects will be discussed below. 

HaloPlex appears to be a specific library preparation technology: 82% of reads were mapped on 

target. This probably results from the combination of restriction enzyme and circularization by probe 

hybridization. Three different designs were necessary to achieve satisfactory gene coverage, 

especially by the addition of probes in BRCA1 and BRCA2 genes. Of note, no detrimental impact of 

the additional probes on the previous design was observed.  

However, HaloPlex technology induces considerable read depth heterogeneity between the 

various sequences of interest due to the use of restriction enzymes for DNA fragmentation with the 

constraints of corresponding restriction maps. Gaps in coverage will therefore be observed when the 

distance between two restriction sites is longer than the read length. Inserts designed to be > 300 

bases are underrepresented in the sequencing data and this under-representation results in coverage 

gaps when there is insufficient redundancy over the region [15]. GC content did not impact coverage 

in this gene panel design. 
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Table 2. Training set. 

Gene Transcript 

Reference1 

Mutation description2 Expected consequence3 Type Detectable with our 

pipeline 

ARd reported 

by our 

pipeline 

Identified by 

NextGene 

ARd reported by 

NextGene 

ATM NM_000051.3 c.1402_1403del p.Lys468Glufs*18 Frameshift deletion yes 0.36 yes 0.43 

BAP1 NM_004656.3 c.639dup p.Ile214Tyrfs*29 Frameshift insertion yes 0.49 yes 0.48 

BLM NM_000057.2 c.1544dup p.Asn515Lysfs*2 Frameshift insertion yes 0.48 yes 0.45 

BLM NM_000057.2 c.1642C>T p.Gln548* Nonsense yes 0.48 yes 0.48 

BLM NM_000057.2 c.2119C>T p.Pro707Ser Missense yes 0.49 yes 0.49 

BRCA1 NM_007294.3 exons 3 to 8 duplication p. ? LGR yes NA no NA 

BRCA1 NM_007294.3 c.3729_3730ins50 p.His1244Aspfs*8 Frameshift insertion yes (with Pindel) NA no NA 

BRCA1 NM_007294.3 exons 3 to 8 duplication p. ? LGR yes (with DESeq) NA no NA 

BRCA1 NM_007294.3 c.4393A>C p.Ile1465Leu Missense yes 0.49 NA NA 

BRCA1 NM_007294.3 c.2292_2310dup19 p.Leu771Argfs*3 Frameshift insertion yes 0.18 NA NA 

BRCA1 NM_007294.3 c.1016dup p.Val340Glyfs*6 Frameshift insertion yes 0.52 NA NA 

BRCA1 NM_007294.3 c.1487G>A p.Arg496His Missense yes 0.52 NA NA 

BRCA1 NM_007294.3 c.1961del p.Lys654Serfs*47 Frameshift deletion yes 0.34 NA NA 

BRCA1 NM_007294.3 exons 1 to 7 deletion p. ? LGR yes (with DESeq) NA no NA 

BRCA2 NM_000059.3 c.1813dup p.Ile605Asnfs*11 Frameshift insertion yes 0.47 NA NA 

CDH1 NM_004360.3 c.586G>T p.Gly196* Nonsense yes 0.46 NA NA 

CDH1 NM_004360.3 exon 3 deletion p. ? LGR yes (with DESeq) NA no NA 

DICER1 NM_177438.2 c.1922T>A p.Leu641* Nonsense yes 0.51 yes 0.49 

DICER1 NM_177438.2 c.5235del p.Phe1745Leufs*6 Frameshift deletion yes 0.47 NA NA 

FANCA NM_000135.2 c.1490C>T p.Pro497Leu Missense yes 0.49 yes 0.5 

FANCA NM_000135.2 exons 15 to 21 duplication p. ? LGR yes (with DESeq) NA no NA 

FANCA NM_000135.2 exons 7 to 11 deletion p. ? LGR yes (with DESeq) NA no NA 

FANCA NM_000135.2 exon 31 duplication p. ? LGR yes (with DESeq) NA no NA 

FANCA NM_000135.2 c.3788_3790del p.Phe1263del Inframe deletion yes 0.49 yes 0.47 
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FANCA NM_000135.2 c.3764_3765insAGGA p.Leu1256Glyfs*23 Frameshift insertion yes 0.28 NA NA 

FANCA NM_000135.2 c.3164G>A p.Arg1055Gln Missense yes 0.48 NA NA 

FANCA NM_000135.2 c.2574C>G p.Ser858Arg Missense yes 0.51 NA NA 

FANCB NM_152633.2 exons 2 to 9 deletion p. ? LGR yes (with DESeq) NA no NA 

FANCD2 NM_001018115.1 exons 4 to 12 deletion p. ? LGR yes (with DESeq) NA no NA 

FANCF NM_022725.3 c.399_407dup p.Leu136_Arg138dup Inframe duplication yes 0.21 no NA 

FANCG NM_004629.1 c.271_280del9insT p.Asp91_Ala93>Serfs*11 Frameshift indel yes 0.42 yes 0.44 

FANCG NM_004629.1 c.620del p.Leu207Profs*2 Frameshift deletion yes 0.46 yes 0.52 

FANCG NM_004629.1 c.1182_1192delinsC p.Glu395Trpfs*5 Frameshift deletion yes 0.8 NA NA 

FANCL NM_001114636.1 c.1036-2A>T p. ? Splicing defect yes 0.99 yes 0.99 

FANCL NM_001114636.1 c.1022_1024del p.Ile341_Cys342delinsSer Inframe deletion yes 0.48 yes 0.48 

FANCL NM_001114636.1 c.919-2A>G p. ? Splicing defect yes 0.51 yes 0.51 

FANCM NM_020937.2 c.2586_2589del p.Lys863Ilefs*12 Frameshift deletion yes 0.99 yes 1 

MET NM_001127500.1 c.3712G>A p.Val1238Ile Missense yes 0.49 NA NA 

MRE11A NM_005591.3 c.424G>A p.Asp142Asn Missense yes 0.45 yes 0.45 

MRE11A NM_005591.3 c.544G>A p.Gly182Arg Missense yes 0.34 yes 0.34 

MSH2 NM_000251.2 c.942+3A>T p. ? Splicing defect yes 0.47 NA NA 

NBN NM_002485.4 c.330T>G p.Tyr110* Nonsense yes 0.48 yes 0.48 

NBN NM_002485.4 c.1125G>A p.Trp375* Nonsense yes 0.5 yes 0.5 

PALB2 NM_024675.3 exon 7 deletion p. ? LGR yes (with DESeq) NA no NA 

RAD50 NM_005732.3 complete gene deletion p. ? LGR yes (with DESeq) NA no NA 

RAD51B NM_133509.3 c.728A>G p.Lys243Arg Missense yes 0.54 yes 0.55 

RAD51C NM_058216.1 c.1026+5_1026+7del p. ? Splicing defect yes 0.42 yes 0.42 

RAD51D NM_002878.3 c.26G>C p.Cys9Ser Missense yes 0.5 yes 0.49 

RB1 NM_000321.2 g.2113_2135dup p.Pro26Argfs*47 Frameshift insertion yes (with Pindel) 0 no NA 

RB1 NM_000321.2 g.2182_2195delinsGCC p.Asp41Glufs*4 Frameshift deletion yes 0.27 yes 0.27 

RB1 NM_000321.2 c.1463dup p.Cys489Valfs*4 Frameshift insertion yes 0.49 yes 0.48 

RB1 NM_000321.2 c.1398del p.glu466Asnfs*12 Frameshift deletion yes 0.73 no coverage <15X 

RB1 NM_000321.2 c.1613del p.Ala538Glufs*5 Frameshift deletion yes 0.47 yes 0.47 

RB1 NM_000321.2 c.2288_2289del p.Arg763Thrfs*31 Frameshift deletion yes 0.51 NA NA 
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RB1 NM_000321.2 c.575_576del p.Lys192Serfs*10 Frameshift deletion yes 0.25 NA NA 

RB1 NM_000321.2 c.468_472del p.156_158del Frameshift deletion yes 0.3 NA NA 

RB1 NM_000321.2 c.1498+3A>C p. ? Splicing defect yes 0.48 NA NA 

RB1 NM_000321.2 c.1147C>T p.Gln383* Nonsense yes 0.98 NA NA 

RB1 NM_000321.2 c.751C>T p.Arg251* Nonsense yes 0.2 NA NA 

RB1 NM_000321.2 c.1954del p.Val654Cysfs*4 Frameshift deletion yes 0.99 NA NA 

RB1 NM_000321.2 c.763C>T p.Arg255* Nonsense yes 1 NA NA 

RB1 NM_000321.2 c.1072C>T p.Arg358* Nonsense yes 0.97 NA NA 

RB1 NM_000321.2 c.1954dup p.Val654Serfs*14 Frameshift insertion yes 0.5 NA NA 

RB1 NM_000321.2 c.1847A>T p.Lys616Ile Missense yes 0.67 NA NA 

RB1 NM_000321.2 c.1846_1847insT p.Lys616Ilefs*37 Frameshift insertion yes 0.6 NA NA 

XRCC2 NM_005431.1 c.450C>G p.Ser150Arg Missense yes 0.5 yes 0.5 

XRCC3 NM_005432.3 c.448C>T p.Arg150Cys Missense yes 0.46 yes 0.47 

Mutations previously identified by sequencing are reported with their corresponding RefSeq. 
1 Nomenclature was numbered on the basis of the following transcripts, 2 Mutation nomenclature according to HGVS recommendations, nucleotide position was numbered 

with +1 corresponding to the A of the ATG of the translation initiation codon , 3 Expected consequence on the protein level, dAllelic ratios are defined as the ratio of the 

non-reference allele to the sum of the non-reference allele and the reference allele. Allelic ratio for heterozygous variants should be centered around 0.5. Abbreviations: LGR, 

large genomic rearrangement; NA, not applicable; AR, allelic ratio 

Table 3. Diagnostic set. 

ID Gene Variant Variant class Predicted effect on 

protein (Align-GVGD 

class; SIFT prediction) 

Personal cancer history (age 

at diagnosis) 

Family cancer history (age at diagnosis) Allele count in 

controls 

(frequency) 

1 ATM c.5460del, 

p.Lys1820Asnfs*8 

Frameshift deletion Unstable or truncated 

protein 

BC (46), OC (57) Sister, bilateral BC (63,63); sister, BC (50) 

/ Maternal branch: mother, bilateral BC 

(60,70); aunt, BC (58); uncle, PrC (64); 

uncle, PrC (80) 

- 

2 BLM c.2489C>G, 

p.Thr830Arg 

Likely deleterious 

missense variant 

Highly conserved amino 

acid, Grantham 71 (C65; 

BC (52), PaC (52) Maternal branch: mother, BC (69); aunt, 

BC (49); aunt, UC (76) 

- 
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deleterious), in helicase 

domain 

3 BRCA2 c.7617+2T>G Splicing mutation Unstable or truncated 

protein 

Bilateral BC (35,35) Sister, BC (46) / Paternal branch: father, 

BC (56); grandfather, NHL 

- 

4 BRIP1 c.2469G>T, 

p.Arg823Ser 

Likely deleterious 

missense variant 

Highly conserved amino 

acid, Grantham 110 

(C65; deleterious), in 

helicase domain 

OC (48) Paternal branch: father, LC (53); uncle, 

PM (76); grandmother, bilateral BC 

(31,33) / Maternal branch: uncle, KC (74); 

aunt, NHL (69); grandmother, BC (56) 

- 

4 CHEK2 c.1399T>C, 

p.Tyr467His 

Likely deleterious 

missense variant 

Highly conserved amino 

acid, Grantham 83 (C65; 

deleterious), in catalytic 

domain 

OC (48) Paternal branch: father, LC (53); uncle, 

PM (76); grandmother, bilateral BC 

(31,33) / Maternal branch: uncle, KC (74); 

aunt, NHL (69); grandmother, BC (56) 

3/8600 (0.03%)1 

5 FANCA c.189+1G>A Splicing mutation Unstable or truncated 

protein 

Bilateral BC (31,75), PaC 

(78) 

Sister, BC (46) and her sister’s daughter, 

BC (39); daughter, BC (48) / Maternal 

branch: mother, OC (74); aunt, BC (63); 

aunt, OC (58) 

- 

6 FANCG c.722C>T, 

p.Pro241Leu 

Likely deleterious 

missense variant 

Highly conserved amino 

acid, Grantham 98 (C65; 

deleterious) 

Bilateral BC (40,62), TC 

(60), PHNET (62) 

Maternal branch: mother, BC (54); aunt, 

bilateral BC (50,65); aunt, BC (64); aunt, 

BC (69); cousin, BC (42); cousin, BC (62); 

grandmother, BC (85); grandfather, IC (68) 

- 

7 FANCM c.1196C>G, 

p.Ser399* 

Nonsense mutation Unstable or truncated 

protein 

Male BC (54) Sister, BC (39); father, CC - 

7 PALB2 c.886dup, 

p.Met296Asnfs*7 

Frameshift 

duplication 

Unstable or truncated 

protein 

Male BC (54) Sister, BC (39); father, CC - 

8 NBN c.643C>T, 

p.Arg215Trp 

Likely deleterious 

missense variant 

Moderately conserved 

amino acid, Grantham 

101 (C0; deleterious) 

BC (36) Maternal branch: mother, BC (55); sister, 

BC (69) and her sister’s daughter, BC (48); 

sister, BC (70) and her sister’s daughter, 

UC (28); sister, BC (40) 

32/8592 (0.4%)1 

or 5/2184 (0.2%)2 

Mutations and likely deleterious variants detected in HBOC syndrome patients. Allele counting control is from Exome variant Server1 and 1000 genomes2. 
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Figure 1. Read depth heterogeneity. Heterogeneity is observed between genes, but also within a gene (e.g. FANCB), although 

to a lesser extend. Boxplots representing the distribution of read counts per gene, normalized by the library size and by the 

gene size. Each box represents the distribution of values between the first and third quartiles and the median is characterized by a 

black line. Longer boxplots indicate a higher variability in the normalized read counts distribution and outlier’s values are depicted 

by individual points. x-axis: genes included in the panel, y-axis: number of reads normalized by library and gene sizes. 
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Figure 2. Coverage heterogeneity in BRCA1 (a) and RB1 (b) Average read depth is 

represented for the entire gene coding sequence at each cDNA nucleotide position 

(extreme values ranging from 1X to more than 1000X). x-axis: length of the coding 

sequence, y-axis: average read depth. 

Moreover, probe hybridization regions are limited to a few bases so that, when mismatch occurs, 

inserts are dropped out and read depth heterogeneity increases at the corresponding target sequences. 

The HaloPlex design includes redundancy, so targets should be covered even when inserts are 

dropped out, but marked read depth heterogeneity implies a greater sequencing capacity. A 

technology that typically has high specificity and uniformity will require less sequencing to generate 

adequate coverage of sequence data for the downstream analysis, making sequencing more 

economical. Although HaloPlex provided good specificity in terms of library preparation, coverage 

heterogeneity constitutes a weak point. 

These insert drop outs explain why real constitutive mutations were called at a ratio different 

from the expected allelic ratio of 0.5, which can range from 0.18 to 0.8, resulting in a marked bias. 

Moreover, HaloPlex probes hybridize on one strand generating large insert sizes. Consequently, 

strand biases cannot be used with 150 bp paired-end sequencing to distinguish true and false positive 
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variants [2]. We therefore decided to set the detection threshold in our bioinformatics pipeline to 

0.15 for constitutive mutations and 0.05 for mosaicism detection for three specific genes in routine 

diagnostics (RB1, DICER1 and APC) to avoid missing any real mutations. As HaloPlex technology 

hybridizes only one DNA strand, recurrence criteria were then applied to filter the variants detected 

with these thresholds. 

Our design also included FANCD2 and PMS2, but sequencing quality was too low for 

diagnostic procedures. Two polymorphisms were indeed missed in FANCD2 and it can be explained 

by a well known weakness of bioinformatic analysis i.e., the presence of 2 FANCD2 

pseudogenes [16]. The same holds true for PMS2. The reason is that pseudogenes are amplified and 

sequenced simultaneously and corresponding reads are mixed at the mapping steps. Consequently, 

variants are called at a low allelic ratio. To avoid this specificity issue, we usually use long-range 

PCR (7 superamplicons from 2.5 kb to 8.9 kb designed with specific primers) followed by Sanger 

sequencing to analyse FANCD2.  

We also tried to exclude pseudogenes from the mapping bed file in order to restrict mapping to 

FANCD2. However, if true variants were correctly found, specificity was too poor, preventing its use 

in diagnosis. Comparison of the data obtained with this specific approach and FANCD2 long-range 

PCR results could be used to define a list of pseudogene variants. Then these variants could be 

systematically subtracted from NGS analysis in order to focus on specific FANCD2 variants. 

Consequently, althought FANCD2 and PMS2 are included in the panel design, results were not 

reported due to low reliability. 

Recurrent false-positives were observed at the read extremities (on both forward and reverse 

reads) and appear to be related to adapter remains, even after using adapter removal software. To 

improve the quality of the trimmed read, Gréen et al. proposed further trimming of sequence reads by 

five bases at the 3’ end [17]. We tried another approach consisting of a two-step trimming procedure: 

adapters were first trimmed, followed by trimming of each single extremity nucleotide of sequence 

reads. The number of recurrent false-positives was considerably reduced by this procedure with no 

impact on coverage. Recent optimization of the SureCall software version 1.1.0.15 (Agilent 

technologies) should also overcome this issue [18]. 

All point mutations were detected on the training set. However, the same does not apply to 

larger indels. Small variants can be detected in NGS data by VarScan2 by allowing mismatches and 

gap opening during read alignment on the reference genome. Each alignment is defined by a score 

that is calculated on the basis of the number of bases that match correctly on the genome, but also on 

the number of mismatches and gaps, as well as their size. Inserting a gap in an alignment decreases 

the alignment score and it is accentuated with its length. If the alignment score decreases below a 

defined threshold, alignment is not reported. It is therefore very difficult to detect insertions or 

deletions larger than 20 bp with a tool dedicated to call small variants on certain specific alignment 

data without dedicated processing steps. In fact, reads that differ excessively (by more than 20% of 

the sequence) from the reference are usually trimmed. Indels were therefore often partially observed 

at read extremities, but in insufficient proportions to be detected, which is why we chose to use 

Pindel in addition to the ―VarScan2‖ bioinformatics pipeline to detect all indels [12]. LGR detection 

required the use of another bioinformatics tool, which is why we used DESeq to improve our 

pipeline. Read counts can be compared between samples in order to detect large rearrangements in 

this particular design, based on the hypothesis that a rearrangement event is unlikely to be recurrent 

inside a run and that, as this constitutional level, the expected copy number is 2. To increase 
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sensitivity and in order to detect all of the training set LGR, read counts were calculated per exon 

and large exons were split into 300 bp windows using BEDtools (V2.21), but real variants were then 

mixed with many false LGR. Poor performers i.e. samples with low coverage below 30X or with low 

DNA quality, were subsequently removed from analysis, but without resulting in any major 

improvement. To further enhance the throughput of this technology, the detection capacity for large 

rearrangements must be developed in the future.  

Overall, our study shows that the combination of Varscan2 and Pindel analysis on HaloPlex 

library is efficient for the detection of small and medium-sized mutations (100% sensitivity on the 

training set). Actually, ―real life‖ sensitivity is probably a bit lower as 13 genes didn’t reach 100% 

coverage (i.e., 95.5% to 99.9%, see Table 1). LGR detection remains an issue in clinical practice: 

althought DESEq correctly identified all LGR, lack of specificity would mandate confirmatory 

MLPA in all patients, prohibiting its use in routine practice. 

This process is available in the Galaxy framework [19–21]. It must be stressed that important 

bioinformatics resources are needed to process and store data compatible with diagnostic practice i.e. 

with fast turn-around time and secure storage. 

As previously described, we found that distinct bioinformatics parameters had a marked impact 

on the results [22]. Validation of the results must be based on a good understanding and better 

control of data analysis pipelines. Biologists must adopt a critical approach and mistrust black box 

solutions. 

5. Conclusion  

We show that the HaloPlex technology is compatible with oncogenetic diagnostic activity. One 

single process to sequence all of our genes of interest at the same time represents a major 

improvement in the laboratory organization by being less time- and personnel-consuming. This 

process can also be more efficient by proposing actionable gene analysis in addition to analysis of 

the principal genes analysed in the clinical setting.  

Using the whole gene panel in unexplained family cancer histories also represents a major 

improvement, as we were able to detect 4 new mutations in BRCA1/2-negative cases.  

This study also demonstrates that data analysis remains a major issue. Geneticists must be actively 

involved in data analysis based on a good understanding of bioinformatics pipelines to avoid 

reporting poor quality results. 
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