An observational study of foot lifts asymmetry during obstacle avoidance

Ujjawal Singh Tomar, Nalina Gupta

Department of Physiotherapy, College of Applied Education and Health Sciences, Meerut, Uttar Pradesh, India

ABSTRACT

Background: Specific information regarding obstacle-clearance strategies used by community-dwelling young and elderly is scant in the literature, and physical barriers encountered in real-life situations have not been used in most of the studies. Aim: The aim of this study is to determine foot lift asymmetry during obstacle avoidance in young and elderly subjects. Settings and Design: This was an observational study. Materials and Methods: Thirty elderly and 30 young individuals were taken for the study. All the subjects were evaluated using different scales and foot lift asymmetry was measured on a walkway using three obstacles of different heights. Results: The mean and standard deviation (SD) value of the asymmetric index of the young was 3.25 ± 0.28 and the mean and SD value of the asymmetric index of the elderly was 3.53 ± 0.47. The asymmetric index of the elderly population was found to be higher than that of the younger population. Conclusion: The asymmetric index of the elderly population was found to be higher than that of the younger population, though it is not clinically significant.

Key words: Elderly population, foot lift, obstacle avoidance, younger population

Introduction

Every individual experiences falls throughout life irrespective of his/her age. Falls in the elderly, by contrast, are a major cause of morbidity and mortality. It leads to consequences that vary from a minor injury to a significant loss of functional independence and even death.[1] A fall in persons over 65 is a result of the complex and poorly understood interaction of biomedical, physiologic, psychosocial, and environmental factors.[1]

It is estimated that 30% of the elderly in the community over 65 years, 40% of those over 80 years, and 66% of the institutionalized elders fall each year. There is a greater than linear increase in the rate of falls between 60–65 and 80–85.[1] Irrespective of the severity of the injury, consequences from even a benign fall can be devastating which can lead to a loss in confidence of one's ability to perform routine tasks, restriction of abilities, social isolation, and increased dependence on others. The ensuing deconditioning, joint stiffness, and muscle weakness that result from immobility can lead to more falls and further restrictions in mobility.[2,3]

The risk factors associated with falls can be classified into intrinsic (host) and extrinsic (environmental). Intrinsic factors include symptoms such as dizziness, weakness, difficulty in walking, or confusion, whereas environmental factors include slippery surfaces, loose rugs, poor surfaces, and obstacles.

Tinneti et al. found that intrinsic factors such as the use of sedatives, cognitive impairment, disability of lower extremities, palomental reflex, and foot problems increase in community-dwelling elders over the age of 75.[4] Intrinsic factors constitute 45% of the falls, whereas extrinsic factors account for 39% of the falls.[5] It is likely that most of the falls are a result of complex interactions of intrinsic as well as extrinsic factors.[6] Cognitive impairment can include a loss of judgment in risk-taking behavior and has been strongly associated with a risk of falls.[3]

Yen et al. found in their study that there was an increased leading toe clearance but unaltered patterns of interjoint coordination in the elderly. Aging increased the variability...
of the way the joints of the lower limb were controlled while crossing obstacles. There was no change in the pattern and variability of the interjoint co-ordination during the trailing-limb crossing in the elderly, possibly because they were able to meet the mechanical demands.7

Specific information regarding obstacle-clearance strategies used by community-dwelling young and elderly is scant in the literature. Physical barriers encountered in real life situations have not been used in most of the studies. Thus, this study attempts to determine foot lift asymmetry during obstacle avoidance in the young and elderly population.

Materials and Methods

This was an observational study. Healthy young participants were taken from College of Applied Education and Health Sciences and healthy older people were taken from the Lala Lajpat Rai Medical College who were either visiting the hospital as a care taker or were accompanying the patients.

Thirty young male individuals (18–30 years) and 30 elderly male individuals (above 65 years) were taken in the study by means of convenient sampling. Individuals who could read, write, understand, follow commands, with normal hearing, who were able to distinguish between three different types of sounds, and who had a normal range of motion (ROM) of joints and hip-knee strength were included in the study.

The subjects excluded in the study were the high-risk elderly, uncooperative subjects, subjects with a neurological disorder like stroke, spinal cord injury, parkinsonism, and so on, those with an orthopedic condition like total hip replacement (THR), total knee replacement (TKR), an injury of the lower limbs or fractures, patients with loss of hearing, patients who were unable to distinguish between different types of sounds, or those having restricted ROM or decreased hip-knee strength.

Procedure

We evaluated all the subjects using the following tests or scales: Mini-Mental Status Examination (MMSE), Berg Balance Scale (BBS), Trail-Making Test (TMT) A and B, Timed Up and Go (TUG), and Choice Stepping Reaction Time (CSRT).

Footlift asymmetry was measured on a walkway of 70 inches. Three obstacles of different heights of 7.6cm, 12.7cm, and 20.3cm were placed on a walkway at equal distances (20 inches), as seen in Figure 1. The width and length of each obstacle was 5 and 20 inches, respectively. The individual was made to step barefoot over the various-sized obstacles placed on a cemented surface. It was natural walking with one foot after the other. The subjects were allowed to choose between leading and trailing foot. Data was recorded using a video camera, and foot lift was measured by calculating the vertical distance between toe and the surface of the obstacle using SportsCad analysis software.

The mean of the readings obtained for lead as well as for lag foot during clearance of small-, medium-, and large-sized obstacle was calculated and recorded for both the groups. Later, asymmetry index was calculated (asymmetry index = lead foot - lag foot), which is a measure of foot lift above the obstacle.

Data was analyzed by using descriptive statistics.

Results

For the young subjects, the mean and SD value of the asymmetric index was 3.25 ± 0.28 [Graph 1], of MMSE was 30 ± 0.0 [Graph 2], of BBS was 56 ± 0.0 [Graph 3], of TMT A was 31.4 ± 1.4 [Graph 4], of TMT B was 63.6 ± 26.05 [Graph 5], of TUG was 7.7 ± 1.76 [Graph 6], and of CSRT was 2.8 ± 1.59 [Graph 7]. This is also depicted in Table 1.

For the elderly subjects, the mean and SD value of the asymmetric index was 3.53 ± 0.47 [Graph 1], of MMSE was 28.4 ± 2.08 [Graph 2], of BBS was 44.5 ± 2.56 [Graph 3], of TMT A was 86.8 ± 36.5 [Graph 4], of TMT B was 132.7 ± 41.5 [Graph 5], of TUG was 10.7 ± 3.7 [Graph 6], and of CSRT was 4.9 ± 2.6 [Graph 7]. This is also depicted in Table 2.

Discussion

This was an observational study and we found the asymmetry index of the elderly population more than that of the younger population. The result of our study...
is consistent with a previous study done by Fabio et al. in 2004 who found that there was a marked asymmetry in foot clearance in the elderly people while stepping over an obstacle. The possible mechanisms proposed as responsible for this was limited hip extension and deficits in executive cognitive functions.[8]

The high asymmetry index for the elderly might be
Conclusion

The asymmetric index of the elderly population was found to be higher than that of the younger population, though it is not clinically significant.

Limitation of the study

Only male subjects were included in the study. There can be an error in measurement in the video graphic analysis of foot lift. Another limitation of the study is that we did not analyze the movement patterns.

Clinical message

Rehabilitate the elderly is helpful while focusing on physical barriers encountered in real-life situations. In addition to uneven terrain, foot lift asymmetry in the elderly can be a factor contributing to falls.

References

How to cite this article: Tomar US, Gupta N. An observational study of foot lift asymmetry during obstacle avoidance. J Neurosci Rural Pract 2012;3:324-7.

Source of Support: Nil. Conflict of Interest: None declared.