Extensive Restricted Diffusion in Bilateral Hemispheric White Matter Following Diffuse Hypoxic Injury Due to Hanging

Sir,

A 56-year-old woman, with alleged history of hanging 10 days back, was rescued and taken to a local hospital. She was unconscious, intubated, and managed conservatively. At the time of admission to our hospital, her Glasgow Coma Scale was E₂V₅M₂, with quadriplegia, bilateral plantar reflexes showing extensor response. Pupils were equal bilaterally, measuring 2 mm and responding to light. Initial magnetic resonance imaging (MRI) of the brain performed at an outside center [Figure 1] was reported as normal. Repeat MRI of the brain obtained in our institute showed abnormal T2/fluid-attenuated inversion recovery (FLAIR) hyperintensity of bilateral caudate nucleus and putamen, multiple cortices in bilateral temporo-parieto-occipital lobes [Figure 2a-c], with effaced adjacent sulci. Subtle abnormal T2/FLAIR hyperintensity was seen in corpus callosum [Figure 2c], bilateral temporoooccipital and parietal lobe white matter, with preservation of normal white matter in frontal lobes [Figure 2a and b]. Diffusion-weighted imaging images showed abnormal hyperintensity in bilateral temporoooccipital and parietal lobe white matter and corpus callosum [Figure 2d], corresponding region hypointensity in apparent diffusion coefficient [Figure 2e and f], suggestive of diffusion restriction. Based on MRI images, severe hypoxic brain injury was diagnosed.

Serial changes are seen in conventional MRI in Wallerian degeneration. No abnormal white matter T2 signal intensity changes will be seen during initial 4 weeks, T2-weighted/FLAIR hypointensity seen during 4–10 weeks, and hyperintensity from 10 to 12 weeks onward.[1] Initial normal T2/FLAIR hyperintensity is due to intact distal axons, T2/FLAIR hypointensity during second phase is due to disintegration of axons and myelin along with alteration in protein-lipid-water ratio, while in late stage, T2/FLAIR hyperintensity is to gliosis. Adult diffuse hypoxic injury of prolonged duration causes extensive cortical damage, producing gyriform diffusion restriction in acute stage. Wallerian degeneration producing diffusion restrictions in subacute stage limited to projection fibers (pontocerebellar fibers,[2] corticospinal tract,[3] or subcortical U-fibers only)[4] is described. Few atypical MRI findings of adult diffuse hypoxic injury such as (i) sparing of posterior circulation,[5] (ii) only basal ganglia involvement, (iii) selective occipital and periolandic subcortical white matter involvement, (iv) motor cortex involvement, and (v) basal ganglia and visual cortex involvement[6] are also described. In the present case, extensive diffusion restriction and T2/FLAIR hyperintensity were noted involving cortex and white matter, with peculiar sparing of frontal lobe gray matter.
and white matter. The pathomechanism behind sparing of frontal lobe remains elusive.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

Kamble Jayaprakash Harsha, K. Parameswaran, M. Anand
Department of Clinical Neurosciences, Indo-American Hospital, Brain and Spine Centre, Vaikom, Kerala, India

Address for correspondence: Dr. Kamble Jayaprakash Harsha, Department of Clinical Neurosciences, Indo-American Hospital, Brain and Spine Centre, Chemmanakary - 686 145, Vaikom, Kerala, India. E-mail: kjharsha@gmail.com

REFERENCES

How to cite this article: Harsha KJ, Parameswaran K, Anand M. Extensive restricted diffusion in bilateral hemispheric white matter following diffuse hypoxic injury due to hanging. J Neurosci Rural Pract 2017;8:306-7.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.