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use, there are some disadvantages when using 
calcium silicate cements so new and more useful 
material need is continuing. MTA‑Angelus and 
calcium enriched mixture (CEM)[13,14] cement are 
two of these materials. MTA‑Angelus is composed 
of calcium carbonate, calcium silicate, calcium 
aluminate, and barium zinc phosphate than 
conventional MTA, which contribute to improve 
setting time and workability.[15,16] Recently, a new 
calcium silicate cements (CSS) material, CEM cement 
has been introduced. CEM cement is a new product 
and contains different chemical components. The 
major components of the powder are 51.75% wt. 
calcium oxide  (CaO), 9.53% wt. SO3, 8.49% wt. 
P2O5, 6.32% wt. SiO2, and minor components are 
Al2O3 > Na2O > MgO > Cl,[14] CEM has similar clinical 
uses to MTA as well as similar pH, working time and 

INTRODUCTION

Marginal adaptation and bond strength of root‑end 
filling materials are among crucial factors for 
endodontic success, because most endodontic 
failures arise from leakage of irritants into the 
periapical tissues.[1‑4] Calcium silicate cement, 
e.g.  mineral trioxide aggregate  (MTA) is an 
endodontic cement that is extremely biocompatible, 
capable of stimulating healing and osteogenesis and 
has been widely used for pulp capping,[5] treatment 
of root perforations,[6,7] root‑end filling material 
during apical surgery,[8] orthograde root canal filling 
before apical surgery,[9] apical barrier formations on 
nonvital teeth with open apices,[10] treatment of large 
periapical lesion,[11] and root canal filling material.[12] 
Despite the favorable results that support its clinical 
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dimensional changes. According to manufacturer 
description CEM is composed of different chemicals 
and has the advantage of shorter setting time, 
increased flow, and decreased film thickness.[17]

Researches on the physicochemical interaction 
between MTA‑based products and root canal walls 
indicated that MTA was a bioactive material[18,19] 
and appeared to chemically bond to dentin through 
a diffusion‑controlled reaction between its apatitic 
surface and dentin.[19,20]

There are various several methods for evaluating 
the adhesion of dental material to dentin. These are 
tensile, shear, and push‑out strength tests.[21‑24] The 
push‑out test is based on shear stresses, which occur 
in clinical conditions and can be imitated by this test 
method.[25] As the push‑out test generates parallel 
fractures in the interfacial area of the dentin‑bonding, 
it presents a better method to evaluate bond strength 
than conventional tests.[26]

Few studies in the literature have evaluated the bond 
strength of MTA‑based materials. ProRoot MTA and 
MTA‑Angelus are the preferred products on the 
market, whereas CEM cement[13] is a new product 
and contains different chemical components. In the 
light of these information’s the aim of this study 
was to evaluate and compare the push‑out bond 
strengths of ProRoot MTA, MTA‑Angelus, and 
CEM cement.

MATERIALS AND METHODS

Preparation of specimens
Fifteen single‑rooted, freshly extracted human 
teeth with mature apices were selected for this 
study. The middle‑third of the roots were sectioned 
perpendicular to the long axis into 1.00 ± 0.05 mm 
thick serial slices (15 root × 4 slice = 60 specimen) 
using a water‑cooled diamond blade on a cutting 
machine  (Isomet, Buhler, Lake Bluff, NY, USA). 
The root slices were drilled with post drills (Exacto, 
Angelus, Londrina, PR, Brazil) perpendicular 
to the root slice to obtain 1.3‑mm diameter 
standardized cavities. The specimens were then 
randomly divided into three groups (n = 20). The 
standardized root slices were filled with white 
ProRoot MTA (Dentsply/Tulsa Dental, Tulsa, OK, 
USA‑04.2015, lot12001879), MTA‑Angelus (Angelus, 
Londrina, PR, Brazil‑04.2014, lot 17975), and 
CEM  (BioniqueDent, Tehran, Iran‑01.2014, lot 
C100501) cement. The specimens wrapped in pieces 

of gauze soaked in serum and were kept for 3 days 
at 37°C to set.

Each group was placed in a separate closed 
plastic container. Saline‑soaked pieces of jaconet 
were replaced daily to maintain a sufficient moist 
environment within the closed plastic container.

Push‑out test
The push‑out bond strengths were measured using a 
universal testing machine (Instron, Norwood, USA). 
The fillings were loaded with a 1‑mm diameter 
cylindrical stainless steel plunger at a speed of 1 mm/min 
[Figure 1]. When dislodgement occurred, the maximum 
load applied to the fillings was recorded in Newtons. 
The recorded value was converted to Mpa using the 
following formula: Newtons/(2 prh), where P is the 
constant , r is the root canal radius, and h is the 
thickness of the root slice in millimeters.

The slices were then examined under a light microscope 
at ×25 magnification to determine the mode of the bond 
failure. Each sample was recorded in one of three failure 
modes: Adhesive failure that occurred at the cement and 
dentin interface, cohesive failure that occurred within 
the cement, and mixed failure. Data were analyzed 
using one‑way analysis of variance  (ANOVA) and 
post hoc Tukey tests. The differences between modes of 
failure were analyzed using Fisher’s exact test.

RESULTS

One‑way ANOVA test showed significant differences 
between the groups (P < 0.001). Mean bond strengths 
and standard deviations of groups were: 12.7 ± 2.5 for 
ProRoot MTA, 4.6 ± 1.1 for CEM cement, and 4.5 ± 1.5 
for MTA‑Angelus [Table 1]. The mean push‑out bond 
strength value of the ProRoot MTA group was a higher 
than the other groups (P < 0.001). There was no significant 
difference between the mean bond strength of the CEM 
cement and MTA‑Angelus (P = 0.982) [Figure 2]. Fisher’s 
exact test revealed that the bond failure modes were 
not significantly different for all experimental groups 
(P > 0.001).

Table 1: Means and SD of groups
Groups n Mean (MPa) SD
ProRoot MTA 20 12.7a 2.5
Angelus MTA 20 4.5b 1.5
CEM cement 20 4.6b 1.1
Different superscript letters means significant difference between two 
groups, SD: Standard deviation, MTA: Mineral trioxide aggregate,  
CEM: Calcium enriched mixture, a,b: statistically significant difference  
between the means of two groups.
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DISCUSSION

An ideal orthograde or retrograde filling material 
should seal to the root‑end cavity wall and surrounding 
tissue, be able to prevent bacterial leakage from the 
periradicular tissues, and resist dislodging forces. 
MTA possesses most of these properties, and is 
the “golden” standard for root‑end filling[27] and 
perforation repair material due to its sealing ability.[28] 
In addition, bond strength of MTA is important, as 
normal tooth functioning can dislodge the material. 
Although, there are various methods to evaluate the 
adhesion of MTA, the push‑out test gives efficient 
and reliable results.[29] In our study, the push‑out test 
method was used to test the bond strength of the 
materials.

Moistening MTA during setting is particularly 
important.[30] MTA has greater comprehensive strength 

when kept in a moist environment for 2-7 days, rather 
than only 4 h.[15] In addition, the retention characteristic 
and push‑out strength of MTA increases by the time if 
kept under moist conditions.[30] And also moistening 
of MTA at least the first 3 days is more important for 
dislodging forces.[30] We incubated all samples in a 
moist environment for 72 h.

In the present study, the push‑out strength of three 
brands of white MTA was evaluated for the first time. 
The analysis of the mean push‑out strength values 
of each brand revealed that there were significant 
differences between the groups (P  <  0.001). In this 
study, the ProRoot MTA group showed the highest 
bond strength among groups.

The setting reaction of MTA requires wet environment.[31] 
The sealing ability of MTA may be raised by its bioactivity 
and apatite‑formation capacity.[31] Gandolfi et  al.[32] 
demonstrated that the kinetics of the apatite‑formation 
on MTA cements when in contact with P‑containing 
fluids and that such property is improved if the 
cement contains phosphorous.[32] Alpha‑tricalcium 
phosphate  (TCP) improves the apatite‑formation 
ability of calcium silicate hydraulic cement soaked in 
phosphate solutions.[33]

It has been demonstrated that the presence of 
phosphorous in MTA cements improve the ability to 
form apatite.[32] However, the phosphorus is 0.22% in 
MTA, 8.52% in CEM.[14] We might say the phosphorus 
is lower in MTA than CEM. And also fluoride delays 
the setting time, increases the expansion and adhesion 
of MTA.[31,34] These components may be related to the 
increase of the push‑out bond strength of the ProRoot 
MTA.

Figure 1: Push-out test design

Figure 2: Error bar chart of the group means with the 95% confidence 
interval
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Mineral trioxide aggregate cements, which are used 
as root‑end filling materials, are directly in contact 
with alveolar bone.[31] The osteoconductive activity is 
important for new bone tissue formation.[35] Sodium 
fluoride was introduced into the formulation of MTA 
cements to improve their biological behavior due to 
its good biological activity on osteoblast cells.[31] It 
has been demonstrated that the presence of fluoride 
in MTA cements improves the expansion of MTA 
cements[31,34] and that the presence of phosphorous 
improves the ability to form apatite.[32] Alpha‑TCP 
improves the apatite‑formation ability of calcium 
silicate hydraulic cement soaked in phosphate 
solutions.[33]

It is important to understand that the physical and 
chemical components in MTA can adversely affect 
setting time and the compressive strength of the 
material.[36,37] ProRoot MTA contains tricalcium 
silicate, bismuth oxide  (Bi2O3), dicalcium silicate, 
tricalcium aluminate, tetracalcium aluminoferrite, and 
calcium sulfate dihydrate. MTA‑Angelus contains 80% 
Portland cement and 20% Bi2O3. MTA‑Angelus does 
not contain calcium sulfate, TiO2, P2O5, FeO. The results 
of the MTA‑Angelus were found lower than ProRoot 
MTA in the present study. It might be explained by 
some distribution differences between the heavy 
metals content of two materials [Table 2].[38] It should 
be studied with other studies with environmental 
scanning electron microscopy with energy dispersive 
X‑ray and micro‑Raman spectroscopy before clinical 
application.

Calcium enriched mixture cement contains CaO, 
calcium phosphate, calcium carbonate, calcium 
silicate, calcium sulfate, calcium hydroxide, and 

calcium chloride. Asgary et al.[14] compared the main 
components of ProRoot MTA with CEM cement and 
found the proportion of the ingredients was different 
and TiO2 and Bi2O3 was not detected in CEM. And 
also the predominant elements of ProRoot MTA were 
calcium, silicon, and bismuth but the predominant 
elements of CEM cement were calcium, sulfur, 
phosphorus, and silicon.[14] They indicated that CEM 
has similar clinical applications as MTAs, but different 
chemical compositions and distribution.[14] These 
chemical compositions and distribution difference 
between CEM and MTA might explain the result of 
the difference between CEM cement and ProRoot 
MTA in this study.

CONCLUSION

ProRoot MTA had higher push‑out bond strength 
than MTA‑Angelus and CEM cement.
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