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ABSTRACT
Attainment of ideal root canal treatment comprises various essential factors such as proper instrumentation, biomechanical 
preparation, obturation, and ultimately depending upon the case, post‑endodontic restoration. Main objective of the treatment is 
to get absolute rid of microbial entity and prevent any future predilection of re‑infection. In order to achieve that, proper seal is 
required to cut down any chance of proliferation of bacteria and future occurrence of any pathology. Although gutta‑percha has 
been the standard obturating material used in root canal treatment, it does not reinforce endodontically treated roots owing to its 
inability to achieve an impervious seal along the dentinal walls of the root canal. Gutta‑percha does not from a monoblock even 
with the use of a resin‑based sealer such as AH Plus because the sealer does not bind to gutta‑percha. As a result, a monoblock is 
formed (consisting of Resilon core material, Resin sealer, bonding agent/primer, and dentin). Another reason of Resilon being a 
better obturating material could be that the removal of smear layer by ethylenediaminetetraacetic acid (EDTA) after biomechanical 
preparation may have allowed the root canal filling material and root canal sealers to contact the canal wall and penetrate in the 
dentinal tubules, which may increase the strength of roots. New silicone‑based sealers like Roekoseal automix and the most recent 
GuttaFlow have some affirmative results regarding solubility and biocompatibility, as compared to other sealers. Methacrylate 
resin–based sealers and mineral trioxide aggregate (MTA)‑based sealers have opened a new horizon for sealers.
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INRODUCTION

Accomplishment of ideal root canal treatment is attributed 
to various essential factors such as proper instrumentation, 
biomechanical preparation, obturation, and ultimately 
depending upon the case post‑endodontic restoration. 
The pertinent aim of this treatment is to do away with the 
microbial entity and any future predilection of re‑infection. 
In order to achieve this, proper seal is required to denigrate 
any chance of proliferation of bacteria and future occurrence 
of any pathology. Sealer along with solid obturating material 
acts synergistically to create hermetic seal.[1,2]

The quality of the seal obtained with gutta‑percha (GP) 
and conventional zinc oxide eugenol  (ZOE) sealers is 

quite far from being perfect.[3,4] Also, despite its multiple 
strong points, GP and conventional sealer combination 
still has its own shortcomings, like its inability to 
strengthen root, as it does not adhere to dentin, inability 
to control microleakage, and the solubility of sealer 
makes prognosis dilemmatic and un‑assuring. Although 
few materials are capable enough to swap GP on multiple 
parameters, research continues to find alternatives that 
may seal better and mechanically reinforce compromised 
roots by forming monoblock, which has been suggested 
to reduce bacterial ingress pathways and strengthen the 
root to some extent.[5,6,10] Hence, several new resin cement 
sealants have been developed to be used instead of ZOE, 
thereby improving the root canal seal and imparting 
it more strength as compared to the conventional 
materials.[3,4] These include silicon‑based sealers which 
are well tolerated by tissues, have low water sorption, and 
have a potential of forming monoblock, thus reinforcing 
root canal,[7] epoxy resin–based sealers with the possibility 
of adhesion to dentin and with lower rates of water 
solubility,[7,8] and mineral trioxide aggregate (MTA)‑based 
sealers which have the predilection toward mineralization 
along with all the viable properties of orthodox sealers. 
Nevertheless, resin‑based and silicon‑based materials 
are also soluble, which may endanger a proper seal, 
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although the solubility of resin‑based materials is usually 
lesser than that of ZOE (which is reported as between 
1% and 7%)[9] and does not exceed a maximum weight 
loss of 3% within 24 h of distilled water storage  (in 
accordance with the standards for Root Canal treatment 
sealer (R Cl T).[7,8] Accordingly, availability of so many 
sealers makes it impossible for the clinician to decide 
what to avail and when. So, the purpose of the article is 
to create awareness about the different types of sealers 
and their pros and cons. Every manufacturer claims its 
product to be the ideal one, but only the clinical results 
can give the affirmation or negation of that particular 
sealer. Till date, none of the sealers has proved to be the 
ideal except a few which can come closer to being one. 
The objectives of this review are to delineate the behavior 
of contemporary sealers and juxtapose it with that of 
conventional sealers and their future clinical use based 
on all the parameters required for ascendancy.

CONVENTIONAL ROOT CANAL SEALER

Early sealers were modified zinc oxide–eugenol  (ZOE) 
cements based on Grossman or Rickerts’s formula that 
were widely used throughout the world. Unlike the 
resin‑based sealers, setting reaction of ZOE‑based sealers 
is a chelation reaction occurring between eugenol and the 
zinc ion of the zinc oxide. This reaction might also occur 
with the zinc oxide phase of GP along with the calcium 
ions of dentin. This might explain the decreased setting 
shrinkage associated with the ZOE‑based sealers.[11] 
Components are given in Table 1.1.

Michaud et  al.[12] evaluated the three‑dimensional 
expansion of GP at various powder/liquid ratios 
of Pulp Canal Sealer extended working time (EWT) 
(ZOE‑based sealer) by using spiral (helical) computed 
tomography (SCT). They concluded that increasing 
the ratio of eugenol in sealer resulted in volumetric 
increase of GP [Figure 1].[13] It is cerebrated that the free 
eugenol component of freshly mixed ZOE sealer can 
seep out and cause various cytotoxic effects on human 
gingival fibroblasts, periodontal ligament  (PDL) cells, 
and osteoblast‑like cells.[13,14] However, Haseih et al.[15] 
reported that leakage of eugenol into periapical tissues 
is very low, and it dramatically decreases over time.

Sealing properties of ZOE ZnOE sealers were inferior in 
comparison to other sealers due to the relatively high 
solubility of the ZOE sealer; so, adhesion between GP and 
ZOE is weak [Figure 2].[16] Eugenol is cytotoxic and the 
same has been shown frequently for ZOE with different 
cell culture systems, especially after mixing, but also 
in a set state. Even higher cytotoxicity was observed 
with formaldehyde‑containing ZOE sealers, which were 
classified as highly/extremely cytotoxic.[17] An ZOE sealer 
in the pulp chamber disinfected the dental tubules to a 
depth of 250 μm[18] and had a good antimicrobial property 
compared to other sealers.[19,20]

CONTEMPORARY SEALERS

•	 AH Plus
•	 GuttaFlow
•	 MTA‑based sealers
•	 EndoSequence bioceramic sealer
•	 Methacrylate‑based resin sealer

Figure 1:  Effects of altered powder/liquid ratios on volumetric change of 
gutta‑percha at the end of 1‑month interval. Control group (no sealer group) 
exhibited no visible expansion. Significant difference (P<0.05) between ZE 
1:2 and ZE 1:3 groups when compared with ZE 1:1 and ZE 1:4 groups. SD, 
standard deviation (courtesy: Chandrasekhar et al. 2011)

Figure 2: The adhesion between gutta‑percha and zinc oxide eugenol is 
weak, and hence a gap remains (courtesy: Upadhyay et al. 2011)
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•	 Calcium phosphate–based sealer
•	 Calcium‑enriched mixture (CEM).

AH PLUS

AH Plus consists of a paste–paste system, delivered in two 
tubes in a new double barrel syringe. The components 
of AH Plus are given in Table 1.2. The epoxide paste 
contains radiopaque fillers and aerosil. The amine paste 
consists of three different types of amines, radiopaque 
fillers, and aerosil.[25]

AH Plus has shown positive results when compared to 
other sealers  [Figures  3‑6].[25] It showed significantly 
lowest weight loss among the different root canal sealers 
in water and in artificial saliva with different pH values, 
independent of the solubility medium used. Furthermore, 
AH Plus showed the greatest stability in solution, as 
compared to the conventional sealers.[26]

AH Plus has a film thickness of 26 mm, which is clearly 
below the value of less than 50 mm required by the ISO 
standard for root canal sealing materials.[25] AH Plus 
has been designed to be slightly thixotropic. A flow of 
36 mm also perfectly meets the requirements of the ISO 
standard (>25 mm).

It is known from the literature that pure epoxy resins 
develop mutagenic activities under the conditions of the 
Ames test. Therefore, the epoxide paste  (paste A) and 
amine paste (paste B) were studied in the Ames test, in 
which the aqueous extracts did not induce any mutagenic 
effects. In numerous in vivo studies, the pure epoxy resins 
never showed any genotoxic effects.[27]

Recently, the antimicrobial effects of endodontic 
sealers  (Endion, AH‑26, AH‑Plus, Procosol, and Ketac 

Endo) were investigated after 2, 20, and 40 days. AH 
Plus produced slight inhibition on Streptococcus mutants 
at 20  days and on Actinomyces israelii at every time 
interval. No effect was found on Candida albicans and 
Staphylococcus aureus.[28]

The studies showed that AH26 and Endomethasone 
sealers released formaldehyde after setting. Only a 
minimum release was observed for AH Plus (3.9 ppm), 
followed by EZ‑Fill  (540 ppm) endodontic cement and 
AH26 (1347 ppm) endodontic cement which yielded the 
greatest formaldehyde release.[29]

AH Plus has greater adhesion to root dentin than 
Epiphany as it is an epoxy resin–based sealer. AH Plus 
has better penetration into the micro‑irregularities 
because of its creep capacity and long setting time, which 
increases the mechanical interlocking between sealer and 
root dentin and the cohesion of sealer causes Resilon to 
be more resistant to fracture.[30]

Kirsten et  al.[31] investigated the mutagenicity of 
resin‑based endodontic sealers by evaluating their 
potential to induce DNA double‑strand breaks (DSBs) on 
extrusion into the periapical tissue and found that there 
were no indications for increased risk of genotoxicity of 
resin‑based root canal sealers caused by the induction 
of DNA DSBs.

The strong link between sealer solubility and periapical 
re‑infection indicates that water solubility of new sealers 
should be studied. So, Azadi et al.[32] studied the water 
solubility of five root canal sealers  [AH26, Topseal, 
2‑Seal, Acroseal, and Roeko Seal Automix  (RSA)] and 
found that the solubilitiesof the sealers AH26, Acroseal, 
Topseal, 2‑Seal, and RSA were 0.28%, 0.36%, 0.07%, 
0.037%, and 0.141%, respectively, after 24 h. After 

Figure 4: Polymerization shrinkage of root canal sealers

Figure 5: Solubility in different storage media over 28 days (Schafer 2003)

Figure 3: Radiopacity of root canal sealers

Figure 6: Adhesion to root canal dentine after various pre‑treatment
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28 days, their solubilities were 1.75%, 0.746%, 0.082%, 
0.04%, and 0.517%, respectively, and the authors came 
to the conclusion that all the tested materials met the 
standards  (maximum weight loss of 3% within 24 h). 
However, the results of 2‑Seal followed by Topseal were 
the most favorable ones.

According to Franco et al.,[33] the oxygen inhibits vinyl 
polymerization in composite resins. Pecora et al.[34] found 
an adhesion of 4 MPa for AH Plus to dentin. After Er: 
YAG laser treatment of the root canal, the adhesion 
increased to about 7 MPa. Recently, Gogos demonstrated 
that a product identical to AH Plus exhibits a significant 
self‑adhesion to dentin of 6.24 ± 1.43 MPa [Figure 7].[35]

Due to its excellent properties, such as low solubility, 
small expansion, adhesion to dentin, and very good 
sealing ability, AH Plus is considered as a benchmark 
“Gold Standard.”[25]

GUTTAFLOW

In 1984, silicone was first introduced as a root canal 
sealer. A‑silicones show comparatively little leakage, are 
virtually non‑toxic, but display no antibacterial activity.

GP powder with a particle size of less than 30 nm has been 
introduced into a silicone matrix (polydimethylsiloxane 
(PDMS)). Silver particles have been added as 
preservative.[33,39] Working time is 15  min and setting 
time is 25-30 min. Components are given in Table 1.3 
GuttaFlow is a cold, fluid obturation system that 
combines sealer and GP in a single material. It consists 
of a PDMS matrix which is highly filled with very finely 
ground GP. PDMS has only limited dimensional change in 
setting (about 0.6%-0.15%) and low water sorption. The 
finely ground GP powder and the silicone‑based matrix 
are distributed homogeneously after mixing. GuttaFlow 
has very promising properties because of its insolubility, 
biocompatibility, post‑setting expansion, great fluidity, 
and ability for providing a thin film of sealer,[40] and hence 
greater adhesion with the dentinal wall [Figure 7].[16]

GuttaFlow has nanosilver in its composition. Nanosilver 
is metallic silver which is distributed uniformly on the 
surface of the filling. It do not cause corrosion or color 
changes in the GuttaFlow. There is sufficient nanosilver 
in the material to prevent further spread of bacteria 
and is highly biocompatible.[41] GuttaFlow also showed 
poor wetting on the root dentin surface because of the 
presence of silicone, which possibly produces high 
surface tension forces, making the spreading of these 
materials more difficult.[42]

GuttaFlow showed good spreadability in the group 
where root dentin surface was treated with both 
ethylenediaminetetraacetic acid  (EDTA) and sodium 
hypochlorite (NaOCl). The reason for this could be the 
increase in the surface energy of the root dentinal wall 
which was free of the smear layer.[42] A GP containing 
silicone sealer expands slightly, and thus leakage was 
reported to be less than for AH26 with GP over a period 
of 12 months.[43]

Dentin surface treated only with EDTA showed high 
contact angle value, suggesting the poor wettability of 
GuttaFlow. The high concentration of EDTA could have 
caused mild etching of the dentin surface leading to the 
exposure of collagen fibers, and the exposure of this 
hydrophobic moiety could have resulted in the increased 
contact angle.[44]

No data for systemic toxicity and allergy are available. 
However, based on the composition of the material, no 
adverse type reaction is to be expected.[39]

MTA‑BASED SEALERS

This sealer produces calcium hydroxide,[47] which 
is released in solution[48] and induces formation of 
hydroxyapatite structures in simulated body fluid.[49] 
Newer developments of MTA include its use as a root 
canal sealer. Currently, three MTA sealer formulations are 
available: Endo CPM Sealer (EGEO SRL, Buenos Aires, 

Figure 7: The homogeneity and adaption of a GuttaFlow to root canal 
walls and it was found that GuttaFlow completely filled the prepared root 
canal but small voids were frequently present within the core of the filling 
material (Upadhyay et al. 2011)
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Argentina), MTA Obtura (Angelus, Londrina PR, Brazil), 
and ProRoot Endo Sealer (Dentsply Maillefer, Ballaigues, 
Switzerland). Components are given in Table 1.4.

The composition of CPM sealer after mixing is reported 
to be 50% MTA  (SiO2, K2O, Al2O3, SO3, CaO, and 
Bi2O3), 7% SiO2, 10% CaCO3, 10% Bi2O3, 10% BaSO4, 
1% propylene glycol alginate, 1% propylene glycol, 1% 
sodium citrate, and 10% calcium chloride.[50]

MTA Obtura is a mixture of white MTA with a proprietary 
viscous liquid.[51] ProRoot Endo Sealer is calcium silicate–
based endodontic sealer. The major components of the 
powder of ProRoot Endo Sealer are tricalcium silicate 
and dicalcium silicate, with inclusion of calcium sulfate 
as setting retardant, bismuth oxide as radiopacifier, 
and a small amount of tricalcium aluminate. Tricalcium 
aluminate is necessary for the initial hydration reaction 
of the cement. The liquid component consists of viscous 
aqueous solution of a water‑soluble polymer and to 
improve The liquid component consists of viscous 
aqueous solution of a water soluble polymer to improve 
the workability.[52‑55]

When placed in the canal, it releases calcium activity 
and causes cell attachment and proliferation, increases 
the pH, modulates cytokines like interleukin (IL) 4, IL6, 
IL8, IL10, and hence causes proliferation, migration, and 
differentiation of hard tissue producing hydroxyapatite 
which aids in the formation of physical bond between 
sealer and MTA.

The polymer did not seem to affect the biocompatibility 
of the materials and the hydration characteristics were 
similar to those reported for MTA.[56] Sealers based on 
MTA have been reported to be biocompatible, stimulate 
mineralization,[50] and encourage apatite‑like crystalline 
deposits along the apical‑  and middle‑thirds of canal 
walls.[52] These materials exhibited higher push‑out 
strengths after storage in simulated body fluid[57] and 
had similar sealing properties to epoxy resin–based sealer 
when evaluated using the fluid filtration system.[50]

Fluoride‑doped MTA demonstrated stable sealing up to 6 
months, and was significantly better than conventional 
MTA sealers and comparable to AH Plus. The study 
supports the suitability of MTA sealers in association 
with warm GP for root filling.[58] Loise et al. evaluated 
the biocompatibility and bioactivity of a new MTA‑based 
endodontic sealer, MTA Fillapex  (MTA‑F; Angelus, 
Londrina, Brazil), in human cell culture and came to the 
conclusion that after setting, the cytotoxicity of MTA‑F 
decreases and the sealer presents suitable bioactivity to 
stimulate hydroxyapatite crystal nucleation.[60]

Sagsen et al. assessed the push‑out bond strengths of 
two new calcium silicate–based endodontic sealers MTA 
Fillapex and iRoot SP and compared them with AH Plus 

in the root canals of extracted teeth and found that in the 
coronal specimens, there was no significant difference 
between the sealers. In the middle and apical segments, 
there was no significant difference between IRoot SP and 
AH Plus groups. However, the IRoot SP and AH Plus had 
significantly higher bond strength values than the MTA 
Fillapex. So, they concluded that MTA Fillapex had the 
lowest push‑out bond values to root dentine compared 
with other sealers.[61]

Gomes‑Filho et  al. evaluated the rat subcutaneous 
tissue reaction to implanted polyethylene tubes filled 
with MTA Fillapex and compared it with MTA‑Angelus, 
and concluded that MTA Fillapex was biocompatible and 
stimulated mineralization.[62]

Bortolini et  al.[63] evaluated in  vitro the intratubular 
penetration and permeability of Endo CPM Sealer in teeth 
contaminated with Enterococcus faecalis and concluded 
that Endo CPM sealer showed greater permeability to 
E. faecalis [Figure 8].

Morgental et al.[64] found that MTA Fillapex and Endo CPM 
Sealer has a good antibacterial effect on E. feacalis before 
setting, but not after setting despite having high pH.

Bin et al.[65] studied the cytotoxicity and genotoxicity of 
MTA canal sealer  (Fillapex) compared with white MTA 
cement and AH Plus, and found that white MTA group 
was the less cytotoxic material in this study. Both AH 
Plus and Fillapex MTA sealer showed the lowest cell 
viability rates and caused an increased micronucleus 
formation.

Vidotto et  al.[66] did the comparison of MTA Fillapex 
radiopacity with five root canal sealers (Endomethasone‑N, 
AH Plus, Acroseal, Epiphany SE, and RoekoSeal) and 
concluded that in a decreasing order of radiopacity, 
AH Plus® (9.4 mm Al) was the most radiopaque sealer, 
followed by Epiphany SE  (7.8 mm Al), MTA Fillapex 
(6.5 mm Al), RoekoSeal (5.8 mm Al), Endomethasone‑N 
(4.5 mm Al), and Acroseal (3.5 mm Al). MTA Fillapex™ was 
the third most radiopaque sealer among all the tested 
sealers. Also, MTA Fillapex has the radiopacity degree in 
agreement with ADA specification No. 57.

Figure 8: (a) Middle third with Endo CPM sealer: low intratubular 
penetration; (b) cervical third with EndoREZ: good intratubular penetration; 
and  (c) apical third with AH Plus: regular intratubular penetration  (1000 
magnification) (courtesy: Bertolini et al. 2010)

cba



Tyagi, et al.: Evolution of root canal sealers

| European Journal of General Dentistry | Vol 2 | Issue 3 | September-December 2013 |	 || 210 || 

Considering the elastic modulus of dentin which is 
about 14-18.6 GPa,[67] the reinforcing effect of MTA may 
be explained by its similar elastic modulus to dentin. 
This hypothesis also explains the gradual increase in 
the fracture resistance of MTA‑filled teeth found by 
Hatibovic‑Kofman et al.[68] Aalso, fracture resistance of 
MTA‑filled teeth is time dependant.

The alkalinity of MTA can theoretically weaken root 
dentin similar to the findings on calcium hydroxide.[69‑71] 
Another hypothesis is that a combination of little tensile 
strength of MTA and lack of bonding to dentin can 
weaken the dentin.[68] Regardless of the excellent biologic 
properties of MTA, the thin dentinal walls still make these 
teeth more prone to fracture and a reinforcing technique 
in these weak roots is necessary.

The novel sealer based on MTA has efficacious sealing 
ability. In contact with a simulated body fluid, the MTAs 
release calcium ions in solution and encourage the 
deposition of calcium phosphate crystals.

ENDOSEQUENCE BIOCERAMIC SEALER

EndoSequence BC Sealer  (Brasseler, Savannah, GA, 
USA), also known as iRoot SP Injectable Root Canal 
Sealer  (Innovative BioCeramix Inc., Vancouver, BC, 
Canada), is an example of a calcium phosphate silicate–
based cement.[72] Its major inorganic components 
include tricalcium silicate, dicalcium silicate, calcium 
phosphates, colloidal silica, and calcium hydroxide. It 
uses zirconium oxide as the radiopacifier and contains 
water‑free thickening vehicles to enable the sealer to be 
delivered in the form of a premixed paste.[73] Components 
are given in Table 1.5.

Hydroxyapatite is co‑precipitated within the calcium 
silicate hydrate phase to produce a composite‑like 
structure, reinforcing the set cement.[74] The introduction 
of a premixed calcium phosphate silicate–based sealer 
eliminates the potential of heterogeneous consistency 
during on‑site mixing. Because the sealer is premixed 
with non‑aqueous but water‑miscible carriers, the 
water‑free paste will not set during storage in the 
syringe and only hardens on exposure to an aqueous 
environment.[75]

EndoSequence BC Sealer uses the moisture within the 
dentinal tubules after canal irrigation to initiate and 
complete the setting reaction. Moreover, the presence 
of smear plugs and/or tubular sclerosis can affect 
the amount of moisture present.[76] The setting time of 
EndoSequence BC Sealer is 4 h and it may be extended in 
overly dry canals.[73] The pH of EndoSequence BC Sealer 
during the setting process is higher than 12 (Material 
Safety Data Sheet information), which increases its 
bactericidal properties.[77] The amount of Ca2+ released 
from EndoSequence BC Sealer was far higher (2.585 mg/l) 

than that released from AH Plus (0.797 mg/l), mainly 
after 7 days.[78]

Loushine et  al.[79] investigated the setting time and 
micohardness of a premixed calcium phosphate silicate–
based sealer in the presence of different moisture 
contents  (0%-9 wt%). The moisture content that 
produced the most optimal setting properties was used 
to prepare set EndoSequence BC Sealer for cytotoxicity 
in comparison with AH Plus, and they concluded that 
cytotoxicity of AH Plus gradually decreased and became 
noncytotoxic, whereas BC Sealer remained moderately 
cytotoxic over the 6‑week period. Hence, it shows 
bioceramic sealer is non‑toxic and biocompatible.

Zoufan et al.[80] conducted a study which evaluated the 
cytotoxicity of GuttaFlow and EndoSequence BC sealers 
and compared them with AH Plus and Tubli‑Seal sealers. 
The GuttaFlow and EndoSequence BC sealers had lower 
cytotoxicity than the AH Plus and Tubli‑Seal sealers.

Hess et al.[83] evaluated the efficacy of solvent and rotary 
instrumentation in the removal of bioceramic sealer (BCS) 
when used in combination with GP as compared with 
AH Plus sealer and found that the working length ( WL) 
was not regained in 70% of samples with BCS/master 
cone short of the WL. Patency was not re‑established in 
20% of samples with BCS/master cone to the WL or in 
70% of samples with BCS/master cone short of the WL. 
Hence, it was concluded that conventional retreatment 
techniques are not able to fully remove BCS.

According to Ghoneim et  al.,[84] bioceramic‑based 
sealer  (i.e.,  iRoot SP) is a promising sealer in terms 
of increasing in  vitro resistance to the fracture of 
endodontically treated roots, particularly when 
accompanied with ActiV GP cones.

Deyan Kossev and Valeri Stefanov[85] found that when 
bioceramic‑based sealers BioAggregate or iRoot SP 
are extruded, the pain is relatively small or totally 
absent. Such lack of pain may be explained based 
on the characteristics of these new materials. During 
hardening, they “produce” hydroxylapatite and after the 
end of hardening process they exhibit the same features 
as non‑resorbable hydroxylapatite‑based bioceramics 
used for bone replacement in oral surgery. Due to the 
hydroxylapatite formed, they are also osseo‑conductive. 
During setting, hard ceramic‑based sealers expand. 
Expansion of BioAggregate and iRoot SP and iRoot BP 
is significant (0.20%). These new bioceramic sealers also 
form chemical bond with the canal’s dentin walls. That 
is why no space is left between the sealer and dentin 
walls [Figure 9].[85]

Borges et  al.[86] compared the changes in the surface 
structure and elemental distribution, as well as the 
percentage of ion release, of four calcium silicate–
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containing endodontic materials with a well‑established 
epoxy resin–based sealer, submitted to a solubility test, 
and found that AH Plus and MTA‑A were in accordance 
with ANSI/ADA’s requirements regarding solubility, 
while iRoot SP, MTA Fillapex, and Sealapex did not fulfil 
ANSI/ADA’s protocols. High levels of Ca2+  ion release 
were observed in all materials except AH Plus. Scanning 
electron microscopy  (SEM)/Energy‑dispersive X‑ray 
spectroscopy (EDX) analysis revealed that all samples 
had morphological changes in both outer and inner 
surfaces after the solubility test. High levels of calcium 
and carbon were also observed at the surface of all 
materials except AH Plus and MTA‑A.

Further studies should be conducted to evaluate the 
by‑product components produced during setting to 
accurately assess the cytotoxicity of EndoSequence BC 
Sealer.

METHACRYLATE RESIN–BASED SEALER

Classification:
1.	 Hydron: First generation
2.	 EndoREZ: Second generation
3.	 RealSeal/Epiphany, Fibrefill: Third generation
4.	 RealSeal SE/MetaSEAL SE: Fourth generation

These are the bondable sealers, and therefore bond 
the core material along with the root canal wall, thus 
forming monoblock. Here we will be discussing about 
the formation of monoblock and where it pretermits 
along with other physical and compatibility properties. 
Components are given in Table 1.6.

Monoblock concept
Resilon is a synthetic polymer. The resin sealer attaches 
to it, as well as to the bonding agent/primer used 
to penetrate into the dentin tubules. As a result, a 
“monoblock” is formed, consisting of filling material 
resins sealer‑bonding agent/primer‑dentin. GP does not 
form a monoblock, even with the use of a resin‑based 
sealer, because the sealer does not bind to GP. 
Moreover, the sealer tends to pull away from the GP on 
setting [Figures 10 and 11].[87]

The intent of a root canal monoblock is to achieve a total 
bond, and hence a total seal of the canal space has been 
hampered by the lack of chemical union between the 
polyisoprene component of GP and methacrylate‑based 
resins. To evade this problem, coating GP cones with 
a polybutadiene di‑isocyanate‑methacrylate adhesive 
is done.[88] This is the first strategy. This adhesive 
resin includes a hydrophobic portion that chemically 
binds with hydrophobic polyisoprene substrate and a 
hydrophilic portion that is chemically compatible with a 
hydrophilic dentinal wall. With the use of this adhesive 
resin coating, a strong chemical union is achieved 

between the GP and the MRBS. This thermoplastic 
resin‑coated GP cone is recommended for use with 

Figure 9: Bioceramic sealer iRoot SP. D‑dentinal tubules of root canal 
wall. White arrow shows the interface between sealer and dentin without 
the presence of any voids because of chemical bond between dentin and 
sealer (courtesy: Deyan Kossev and Valeri Stefanov 2009)

Figure 10: RealSeal/Resilon and gutta‑percha/AH26 (courtesy Rosenberg 
et al. 2007)

Figure 11: (a) Graphic illustration of dentinal tubules after smear 
layer removal.  (b) Graphic illustration of Resilon primer penetration. 
(c) Graphic illustration of Resilon sealer penetration and Resilon point 
creating a monoblock of resin. (d) Resilon “monoblock” (×40). (e) Resilon 
“monoblock”  (×650).  (f) Sealer tags and Resilon (×1000)  (Takagi S, Chow 
LC, Hirayama S, et al. 2003)
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the EndoREZ system.[89] The second scheme uses a 
polycaprolactone and dimethacrylate‑containing resin 
blend to form a filled thermoplastic composite (Resilon) 
that replaces GP as an alternative root filling material.[90]

The introduction of adhesive endodontics flings 
assurance, but also has some minuses.[91] For the 
second‑generation EndoREZ system, gaps and silver 
leakage were identified between the GP resin coating 
and the EndoREZ sealer, even though a thin layer of 
hybridized dentin created by EDTA demineralization 
could be identified together with long resin tags.[92] When 
considering that the interface between the GP resin 
coating and the resin sealer is the only truly bondable 
interface in this system, this interface is a weak link 
that failed during polymerization shrinkage of the 
sealer. The chemical union between the polyisoprene 
component of the GP and the polybutadiene end of the 
resin coating molecule appears to be stronger than the 
coupling between the methacrylate end of the molecule 
and the resin sealer. Removal of the oxygen inhibition 
layer[93] from the surface of resin‑coated GP cones during 
packaging has been hypothesized for their weak adhesion 
to the methacrylate resin–based root canal sealer, 
resulting in their frequent delamination from the sealer 
after root canal obturation. Hiraishi et al.[94] attempted 
to improve the shear strength of the resin‑coated GP to 
the EndoREZ sealer by generating active free radicals for 
chemical coupling via in situ application of a dual‑cured 
dentin adhesive to the resin‑coated GP. They observed 
a fivefold increase in shear strength after adhesive 
application, with complex interfacial failures instead 
of complete sealer delamination from the resin coating.

The adhesive strength of Resilon to a third‑generation 
MRBS was 4-5 times lower than the bond strength of a 
composite resin to the same sealer,[95] suggesting that 
the coupling of MRBSs to Resilon is very weak. This 
occurrence might be attributed to the phase separation of 
the emulsified dimethacrylate phase within a continuous 
polycaprolactone phase.[96] The bond strength of 
Epiphany to Resilon was reported to be lower than the 
bond strength of AH26, an epoxy resin–based sealer to 
Resilon.[100]

The fourth‑generation self‑adhesive type root canal 
sealers are still relatively new, and detailed information 
on their adhesive properties to root filling materials is 
limited or lacking. For the 4‑META containing sealer 
MetaSEAL, a recent report identified a hybrid layer‑like 
structure along the GP–sealer interface.[97] However, no 
data are currently available on the adhesive strength 
of MetaSEAL to GP via this hybrid layer‑like interface. 
Taken together, these data suggest that the chemical 
coupling between contemporary MRBSs to root filling 
materials is generally weak or insufficiently optimized. 
In view of the extremely high C‑factor encountered 
in long, narrow root canals,[98] it is doubtful whether 

the core material–sealer bond is capable of resisting 
polymerization shrinkage stresses that develop during 
the setting of the resin sealer to permit the realization of 
the goal of creating a monoblock in the root canal system.

The existence of monoblock throughout the entire root 
canal system was not seen in a study by Tay et al.[99] SEM 
evaluated the ultrastructural quality of the apical seal of 
canals obturated using the Resilon system compared to 
canals obturated with GP and a resin sealer. Excellent 
coupling was found between the Resilon and sealer; 
both gap‑free and gap‑containing segments were viewed 
along the dentin–sealer interface. Similar gap‑free and 
gap‑containing segments were observed in the GP 
group. Gap formation was likely created due to the 
polymerization contraction of the methacrylate‑based 
resin sealer.[99,100]

Studies on different physical properties of 
methacrylate‑based sealers
While the low interfacial bond strengths found in the 
research of Tay et al. and Gesi et al. cast doubts on the 
ability of Resilon to strength roots, the initial study by 
Teixeira et al. found that Resilon obturated teeth were 
more than 20% stronger than the teeth obturated with 
GP and resin sealer.[100]

The retention mechanisms suggested by the 
manufacturers of methacrylate resin–based root canal 
sealers (i.e., dentin hybridization and profuse resin tag 
formation) are likely to be contributed by the combined 
dentin demineralization effects of EDTA[101] and the sealer 
system.

When EDTA was used as the final rinse, the smear layer 
was completely dissolved and a thin layer of partially 
demineralized dentin could be identified on the intact 
dentin surface, irrespective of whether the sealer 
was non‑etching  (EndoREZ) or self‑etching  (RealSeal, 
Meta‑SEAL, and RealSeal SE).[102]

For methacrylate resin‑based sealers, thin films had 
higher bond strength than thick films (P<0.001 for both 
tensile and shear bond strength). With the epoxy‑based 
sealer, either no difference (shear) or lower bond strength 
in thin films (tensile; P<0.05) was found, and appeared 
to result from numerous voids created during mixing.[103]

It is normally seen that polymerization shrinkage occurs 
more when resin sealer is sparsely filled, and used in 
low viscosity which creates the gap in sealer–dentin 
interface and can allow the microorganism to penetrate 
and multiply. So, slow polymerization of the dual‑curable 
sealers would improve the chance for the relief of 
shrinkage stress via resin flow. The slow self‑curing 
mechanism of some of these sealers is supposed to 
promote stress relief via prolonged gelation time during 
the initial setting stage.[104]
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Epiphany  (RealSeal)‑filled canals also contained 
significantly more voids and gaps than those filled with 
GP and conventional sealers.[105]

Pulling of resin sealer tags out of the tubules during 
polymerization shrinkage of the sealer might create gaps 
along the sealer–dentin interface.[110] Heat generation 
during warm vertical compaction and searing of the sealer 
from the canal orifices with a heat source could have 
expedited the setting of the sealers, defeating the purpose 
of incorporating delayed polymerization mechanisms 
and preventing relief of polymerization stresses by slow 
flow.[111,112]

While excellent coupling was found between the Resilon 
and sealer, both gap‑free and gap‑containing segments 
were viewed along the dentin‑sealer interface. Similar 
gap‑free and gap‑containing segments were observed 
in the gutta‑percha group. Further apical leakage was 
observed in all gutta‑percha obturated canals and 9 of 
10 Resilon obturated canals. The authors speculated that 
gap formation was likely created due to the polymerization 
contraction of the methacrylate‑based resin sealer.[113]

It is known that polymers degrade over time through 
physical and chemical processes.[114] As the bond 
degrades, interfacial leakage increases, which resembles 
in vivo aging. In addition, Resilon is susceptible to 
alkaline[115] and enzymatic[116] hydrolysis. Therefore, 
biodegradation of Resilon by bacterial/salivary enzymes 
and endodontically relevant bacteria might occur in the 
event of apical or coronal leakage. Many studies have 
been performed and it is seen that leakage results vary 
too much [Figure 12].

The chemical coupling between contemporary MRBSs and 
root filling materials is generally weak or insufficiently 
optimized. In view of the extremely high C‑factor 
encountered in long, narrow root canals,[117] it is doubtful 
whether the core material–sealer bond is capable of 
resisting polymerization shrinkage stresses that develop 
during the setting of the resin sealer to permit the 

realization of the goal of creating a monoblock in the 
root canal system.

Teixeira et al.[118] showed that roots filled with Resilon/
Epiphany exhibited significantly higher fracture load 
values than those filled with GP/AH26 when the 
specimens were subjected to vertical loading forces. This 
finding was supported by other studies demonstrating 
that roots filled with MRBSs exhibited higher resistance 
to fracture than those filled with GP and sealers[119] 
[Figure 13].

Hammad et al.[120] reported that Epiphany and EndoREZ 
groups showed significantly higher fracture loads than 
GP and GuttaFlow (Coltene/Whaledent Inc., Cuyahoga 
Falls, OH, USA) groups. However, opposing results were 
reported by other studies showing that bondable root 
filling materials did not improve the overall mechanical 
properties of the root dentin. In those studies, the 
combined use of Epiphany  (RealSeal)/Resilon was 
unable to reinforce endodontically treated teeth against 
horizontal fracture forces[121‑123] as well as vertical loading 
forces.[122‑124]

It is perceived that MRBSs are not able to influence the 
mechanical properties of root canal dentin might be 
due to the following factors: (1) polymerization along the 
sealer–dentin interface in the coronal part of the root is 
possibly affected by oxygen inhibition;[125]  (2) creeping 
of incompletely polymerized resinous sealers, which 
results in failure along the sealer–dentin interface;[126] 
(3) presence of residual monomers in the root canals;[127] 
and most importantly,  (4) the low cohesive, tensile, 
compressive strengths and modulus of elasticity of the 
currently available root filling materials when compared 
with dentin, with the former behaving as elastomers that 
dissipate instead of transmitting stresses.[124]

Toxicity of Epiphany might be explained by the presence 
of unpolymerized hydrophilic monomers  (such as 
2‑hydroxyethyl methacrylate (HEMA)) that can easily 
diffuse into the cell and elicit significant toxicity. Epiphany 
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Figure 13: Results of in  vitro studies to examine whether the use of 
methacrylate resin–based sealers and bondable root filling materials is 
able to improve the fracture resistance of root‑filled teeth (courtesy: Kim 
et al. 2009)
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requires body temperature and total elimination of air 
contact to polymerize. It polymerized within 30 min in 
an anaerobic environment, but in the presence of air, 
material setting took up to 7 days.[128]

There is a general consensus that MRBSs used with 
Resilon or GP were more effectively removed, with fewer 
remnant filling materials than conventional sealer/FP 
combinations. Easier removal and less remnant materials 
would imply that MRBSs do not bond well to sclerotic 
dentin that is present in the apical part of the canal walls. 
Epiphany is insoluble in the solvents commonly used 
in dentistry. Thus, removal of resin sealers from fins, 
accessory canals, or canal isthmi remains a challenge. 
Ezzie et al.[129] found that Resilon left less residual debris 
in the apical third of the root canal; this may be due to 
the fact that effective removal of the smear layer and 
subsequent bonding is difficult to achieve in this area.

Al‑hiyasat (2010) investigated the cytotoxic effects of four 
resin‑based root canal sealers, namely, AH Plus, an epoxy 
resin; EndoREZ, a single‑methacrylate–based sealer; 
Epiphany, a multi‑methacrylate resin–based sealer; and 
MetaSEAL, one of the latest generation methacrylate 
4‑META–containing resin‑based sealers, and found that 
MetaSEAL was most cytotoxic and AH Plus was least 
cytotoxic.[108]

Javaheri et  al.[149] conducted a study to evaluate the 
fracture resistance of teeth restored with two obturation 
and two filling systems. They found that composite resin 
restorations may recover significantly more fracture 
resistance than those bonded with amalgam. Resilon–
Epiphany may have slightly, but not significantly 
superior results in terms of fracture resistance, as shown 
in Figure 14.

CALCIUM PHOSPHATE SEALER

Bae et  al.[135] investigated the cellular effects of newly 
developed calcium phosphate–based sealers (CAPSEAL 
I and II) using cultured human periodontal ligament 

cells  (HPDLCs), in comparison with epoxy resin 
sealer  (AH26; Dentsply, DeTrey, Konstanz, Germany), 
ZOE sealer (EWT; Kerr Corporation, Orange, CA, USA), 
and CPC sealer  (Sankin apatite sealer; Sankin‑kogyo, 
Tokyo, Japan), and found that both CAPSEAL I and 
II show less cytotoxicity and inflammatory mediators 
compared with the other sealers and have the potential 
to promote bone regeneration as root canal sealers. 
Components are given in Table 1.7.

Shon et  al.[136] examined the biological effects of new 
calcium phosphate–based root canal sealers, CAPSEAL I 
and CAPSEAL II (CPS), on human periodontal fibroblast 
cells by examining the expression levels of inflammatory 
mediators and compared the effects of CPS on the 
viability and osteogenic potential of human osteoblast 
MG63 cells, with those of other commercially available 
calcium phosphate sealers  [Apatite Root Sealer type I 
(ARS I)] and  [Apatite Root Sealer III  (ARS III); Sankin 
Kogyo, Tokyo, Japan] and an ZOE‑based sealer  [Pulp 
Canal Sealer EWT (PCS EWT); Kerr, Detroit, MI, USA) 
and came to the conclusion that CAPSEAL I and II 
facilitate the periapical dentoalveolar and alveolar healing 
by controlling cellular mediators from PDL cells and 
osteoblast differentiation of precursor cells.

Khashaba et  al.[138] evaluated the histopathologic 
biocompatibility of two new calcium phosphate–based 
sealers (CPS‑1 and CPS‑2) with a commercially available 
calcium hydroxide–based sealer (Acroseal) and found that 
CPS‑1 sealer was not biocompatible. CPS‑2 sealer and 
Acroseal had a favorable biocompatibility level based on 
the histological findings.

Accordingly, Yang et al.[139] did field emission‑scanning 
electron microscopy and found that both CAPSEAL I 
and II sealers were well adapted to the canal wall and 
infiltrated into the dentinal tubules.

CALCIUM‑ENRICHED MIXTURE

White et al. showed weakening of dentinal structure in 
short term and attributed this effect to the structural 
alteration of proteins caused by the alkalinity of MTA.[140] 
Recently, a new biomaterial, CEM cement has been 
introduced.[141] This cement consists mainly of CaO, 
SO3, P2O5, and SiO2. CEM cement releases calcium 
hydroxide during and after setting.[141,142] This cement 
has antibacterial features similar to calcium hydroxide 
and better than MTA.[142,143] On comparison with MTA, 
this novel cement was found to have similar sealing 
ability and pH and increased flow, but decreased working 
time and film thickness.[144] It has shown its capacity in 
regenerating PDL and induction of cementogenesis.[145]

Milani et  al.[146] evaluated the strengthening effect of 
MTA and CEM and found it to be the same for MTA and 
CEM. Andreasen et al.[147] have advocated placing calcium 

Figure 14: Mean fracture loads and standard deviations (N) of the studied 
groups. Control  =  no obturation; 1A  =  AH26–gutta‑percha  +  bonded 
amalgam; 1B = AH26–gutta percha + composite restoration; 2A = epiphany–
resilon + amalgam bond; 2B = epiphany–resilon + composite restoration. 
Control = intact tooth (courtesy: Javaheri et al. 2012) 148
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hydroxide for a maximum of 4 weeks followed by filling 
the canal with MTA. This abbreviates the duration of the 
high fracture risk phase of calcium hydroxide dressing 
and allows much earlier placement of strength enhancing 
restorative materials. In contrast to the aforementioned 
studies, other investigators believe that the alkalinity 
of MTA can theoretically weaken root dentin, similar to 
the findings on calcium hydroxide.[148] Lack of data on 
modulus elasticity of CEM, the mechanism of reinforcing 
effect of CEM remains to be elucidated. Lack of data on 
modulus elasticity of CEM, the mechanism of reinforcing 
effect of CEM when used as a sealer remains to be 
elucidated.

An important issue neglected in the studies on fracture 
strength of MTA‑filled teeth is the role of fatigue. None of 
these studies applied cyclic loads prior to fracture testing. 
However, it is recommended to consider this issue in 
future studies on fracture strength of immature teeth.

CONCLUSION

The evolution of sealers is from the conventional ZOE to 
the contemporary ones like epoxy‑based resin and MRBS, 
and to the most recent MTA sealer and bioceramic sealer, 
which have the predilection to change the perception 
the way sealers have been used in the near future. MTA 
and bioceramic sealer have opened a new dimension on 
how apart from creating hermetic seal, a sealer can also 
have the propensity toward mineralization through the 
formation of hydroxyapatite crystals.

It is seen that in contact with a simulated body fluid, 
the MTA sealer and bioceramic sealer released calcium 
in solution and encouraged the deposition of calcium 
phosphate crystals, and have superior sealing ability as 
compared to resin‑based sealer though more study needs 
to be done as far as retreatment and fracture resistance 
is concerned.
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