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Near‑infrared spectroscopy—current status

Gyaninder P. Singh

part of the skin. Each NIRS sensor (optodes) has a 
light‑emitting source and two photodetectors integrated 
into a self‑adhesive rubber plate that is attached to the 
forehead. The emitter and detectors are situated 4–8 
cm apart. Light is generated at specific wavelengths 
typically by light‑emitting diodes, and is usually detected 
by silicon photodiodes. The light emitted from the 
emitter passes through the scalp, skull bone and brain 
tissue. The photodetectors capture the reflected light 
from the underlying tissue. The light detected by the 
photodetector close to the emitter passes through the 
scalp and skull bone, while the light detected by the 
photodetector farther from the emitter passes through 
the brain tissue [Figure 1]. Near field photodetection is 
then substracted from far field photodetection to provide 
a measurement of brain tissue oxygenation.

In adults, bilateral frontal cerebral oximetry is used to 
monitor perfusion to at‑risk areas of grey matter within 
cerebral cortex in the watershed areas between the 
anterior cerebral artery and middle cerebral artery. The 
smaller head circumference of neonates and children 
permits greater depth of penetration and assessment of 
subcortical tissue oxygenation. The sensors illuminate 
up to a volume of 10 ml of hemispherical tissue.

There have been several attempts to determine the 
normal and critical value of regional cerebral oxygen 
saturation (rScO2). However, data on cut‑off values are 
still limited. The normal values of rScO2 are reported to be 
60–80% in various studies. In an animal study, a decrease 
of the absolute value of rScO2 below 50% was associated 
with electroencephalogram abnormalities, and a further 
decrease in rScO2 below 40% lead to increased brain lactate 
levels.[5] Absolute rScO2 values below 50% have been 
repeatedly shown to be associated with an unfavourable 
clinical and/or neurological outcomes. Fischer et al. 
observed that a decrease in rScO2 below 60% absolute 

INTRODUCTION
Near‑infrared spectroscopy (NIRS) is a non‑invasive 
technique for measuring regional oxygen saturation (rsO2). 
It provides real‑time information of changes in rSO2 of 
cerebral and somatic tissues. It can provide an early 
warning of decreased oxygen delivery. Tissue ischaemia 
is a significant contributor to increased morbidity and 
mortality, and thus measurement of tissue oxygenation is 
of paramount importance in critical care settings. In 1977, 
Franz Jöbsis first observed that light in the near‑infrared 
light spectrum (wavelength 700–950 nm) can traverse 
biological tissue because of the relative transparency of 
tissue to light in this wavelength range.[1] This discovery 
later led to the development of NIRS technique to 
measure tissue oxygen saturation.

NIRS relies on ‘Beer‑Lambert law’ (i.e., measurement 
of a substance concentration based on its absorption 
of light). Thus, measurement is based on determining 
haemoglobin oxygenation according to the light 
absorbed by haemoglobin.[2] The absorption of light is 
proportional to the concentration of certain chromophore 
molecules, mainly iron in haemoglobin and copper in 
cytochrome. In the brain, the primary infra‑red light 
absorbing molecules are metal complex chromophores, 
namely, oxyhaemoglobin, deoxyhaemoglobin and 
cytochrome‑C oxidase. Because about 70% of the blood 
in the brain is in the veins and capillaries and 25% in 
the arteries, most of the haemoglobin is in the venous 
circulation. Thus, NIRS gives a venous‑weighted relative 
oxygen index of tissue beneath the probe.[3,4] Cerebral 
oximetry does not depend on pulsatility of blood flow, 
unlike pulse oximetry.

The NIRS sensors are applied on either side of the 
forehead on a clean, dirt‑free, non‑greasy and non‑hairy 
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was associated with an increased complication rate in 
patients undergoing aortic arch surgery.[6] Tang et al. found 
the incidence of post‑operative cognitive dysfunction 
increased in patients undergoing thoracic surgery even 
if rScO2 decreased below 65% for more than 5 min.[7] It is 
more appropriate to interpret the trend changes in rScO2, 
rather than absolute values.[8] A 20% decline in rScO2 from 
baseline is considered to be ischaemic threshold.[9,10] In 
general, a decrease in rScO2 is reflective of an increase in 
oxygen extraction as a result of increased metabolism, 
decreased perfusion and/or stagnant perfusion. High 
rScO2 may be indicative of increased perfusion, decreased 
tissue bed metabolism and/or less oxygen extraction.

CLINICAL APPLICATIONS
An important application of NIRS is for perioperative 
assessment of cerebral oxygenation during cardiac 
surgeries. It is a useful monitor in patients on 
cardiopulmonary bypass (CPB) where stroke and 
post‑operative cognitive dysfunction leading to poor 
neurological outcome is a concern for all clinicians. The use 
of NIRS has been found to decrease cerebral desaturation 
events during CPB, fewer incidences of strokes and 
less post‑operative major organ morbidity (mechanical 
ventilation, myocardial infarction).[11,12] Similarly, low 
rScO2 levels below 50% have been associated with 
increased risk of post‑operative cognitive dysfunction and 
prolonged hospital stay by about three‑fold.[13,14]

NIRS has also been extensively used to monitor cerebral 
perfusion. It can be a valuable tool to detect cerebral 
ischaemia during carotid endarterectomy (CEA). Various 
cut‑off values such as a decline of more than 20% from 
baseline have been recommended.[15] However, some 
studies recommend a decrease in rScO2 of more than 12% 
to be reliable, sensitive and reliable specific threshold for 
brain ischaemia.[16]

NIRS is increasingly being used in paediatric patients 
during cardiac surgery, neurosurgery and critical care 

settings for low birth weight infants and premature 
children at risk of apnoea. It may also be used to measure 
systemic perfusion via somatic channels.

NIRS monitoring can help predict cerebral desaturation 
events in high‑risk surgeries such as shoulder surgery in 
beach chair position,[17] thoracic surgery with one‑lung 
ventilation,[18] major abdominal surgery, hip surgery 
and laparoscopic surgeries with patients in reverse 
Trendelenburg position.[19] Its use can be extended to 
optimise cerebral oxygenation in patients at risk of 
perioperative stroke.

In  traumatic brain injury (TBI), mortality, intracranial 
hypertension and compromised cerebral perfusion 
pressure have been found to be associated with rScO2 
values below 60%.[20] NIRS changes precede changes 
in intracranial pressure in patients having delayed 
traumatic haematomas.[21] NIRS has also been used to 
test autoregulation of cerebral blood flow (CBF).[22]

NIRS is a valuable technique for monitoring the 
haemodynamic changes occurring in superficial regions 
of the cortex.[23‑25] Over the last 20 years, NIRS has become 
an attractive alternative to functional magnetic resonance 
imaging (fMRI), with several clinical advantages.[26] 
Besides being continuous, non‑invasive and portable, 
NIRS is less susceptible to movement artefacts enabling 
long‑term monitoring of the haemodynamic activity at 
the bedside. In patients of subarachnoid haemorrhage 
having cerebral vasospasm, NIRS is particularly useful 
in detecting changes in cortical O2 saturation.[27] In stroke 
patients, studies have shown the usefulness of NIRS in 
detecting cerebral ischaemia.[28] Terborg et al. describes 
NIRS as non‑invasive, rapid, repeatable, bedside method 
to detect reduction in cerebral perfusion in patients 
with acute ischaemic stroke without the need for 
transportation of critically ill patients.[29] However, the 
low penetration depth (upper 1 cm of the cerebral cortex) 
and less spatial resolution of NIRS than the resolution of 
standard fMRI scanners limits its sensitivity.[30]

Another application of near‑infrared wave technique is 
the measurement of CBF. CBF measurement provides 
valuable information in the management of neurocritical 
care patients. However, currently available techniques 
for monitoring CBF have various limitations.   The 
limitations include that they are invasive, do not provide 
continuous measurement, require exposure to ionising 
radiation, may require transportation of critically 
ill patients out of the neuro intensive care unit and 
expensive. Transcranial Doppler, though non‑invasive, 
is limited to large vessel flow velocities, which do not 
necessarily reflect microvascular perfusion.[31] Diffuse 
correlation spectroscopy (DCS) is a novel non‑invasive 
optical technique with potential to monitor bedside CBF. 
DCS uses near‑infrared light (wavelength 650–950 nm) to 

Figure 1: The placement of near-infrared spectroscopy sensors 
over the forehead and the path of near-infrared light from emitter 
to 2 detectors
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provide a continuous measurement of transcranial blood 
flow. Changes in blood flow are determined from DCS by 
measuring the decay rate of the detected light intensity 
autocorrelation function.[32] The integration of DCS with 
NIRS in a monitor that can simultaneously monitor CBF 
and oxy‑ and deoxy‑haemoglobin concentrations will 
facilitate monitoring both CBF and oxygen metabolism in 
neurocritical care patients. NIRS and DSC have been used 
to measure tissue perfusion and oxygenation and have 
shown changes in autoregulation in patients of ischaemic 
stroke.[33] The continuous and non‑invasive nature of these 
optical techniques may lead to new clinical tools for use in 
the neurocritical patients. Like NIRS, DCS is also limited by 
the fact that it is a measure of local CBF (flow measurements 
limited to the area near the surface of the cerebral cortex).

The NIRS can measure haemodynamic changes 
associated with functional brain activity that arises from 
changes in blood oxygenation and blood volume in the 
area of activation.

The fMRI has become the gold standard for in vivo 
imaging of the human brain. However, NIRS has 
also become a popular technology for studying brain 
function (due to being more convenient and less 
expensive than fMRI). Cui et al. demonstrated that 
NIRS signals are often highly correlated with fMRI 
measurements. Their findings suggest that, while NIRS 
can be an appropriate substitute for fMRI for studying 
brain activity related to cognitive tasks, care should be 
taken to ensure that the spatial resolution is adequate, 
and the design accounts for weaker SNR, especially in 
brain regions more distal from the scalp.[34]

NIRS seems to be an important tool in clinician’s 
armamentarium for predicting cerebral and somatic tissue 
desaturation events. Despite its potential advantages 
over other neuromonitoring techniques such as being 
user‑friendly, non‑invasive and being capable of 
taking measurements over multiple regions of interest 
simultaneously with high temporal resolution; further 
investigation and technological advances are necessary 
before it can be introduced more widely into clinical practice.
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