Use of desflurane in neurosurgery: Cons

Shashi Srivastava

Abstract

Desflurane is being projected nowadays as inhalational agent of choice in the repertoire of the modern day anaesthesiologists. Refinement of its pharmacologic properties from its predecessors has attracted the attention of clinicians towards this novel agent. However, within the realms of neurosurgical anaesthesia, the widespread use of desflurane today should be, at best viewed with a bit of caution. Although a sizeable number of advantages of using desflurane exist, anaesthesiologists dealing with neurosurgical patients should be cognizant of its drawbacks.

Key words: Intracranial pressure, desflurane, emergence

INTRODUCTION

Desflurane with its favourable pharmacokinetic and pharmacodynamic profile though is an attractive inhalational agent, suitable for all age groups and surgeries but its use in neuroanaesthesia is not devoid of adverse effects such as increase in the intracranial pressure (ICP) due to various reasons and dose-related sympathetic stimulation confers the advantage of precise control of anaesthetic depth along with rapid, predictable and clear-headed recovery making it a popular component of neurosurgical anaesthesiology. In spite of its obvious advantages, desflurane has its share of adverse effects which limits its universal usage.

Desflurane being extremely volatile (boiling point 23.5°C) requires specialised vaporizer to ensure its appropriate delivery which requires external power supply. Thus, conventional vaporizers cannot be used for its delivery. Due to its pungent strong odour, it cannot be used for inhalational induction.

Department of Anaesthesiology, SGPGIMS, Lucknow, Uttar Pradesh, India

Address for correspondence:
Dr. Shashi Srivastava, Department of Anaesthesiology, SGPGIMS, Lucknow - 226 014, Uttar Pradesh, India.
E-mail: shashian2014@gmail.com

How to cite this article: Srivastava S. Use of desflurane in neurosurgery: Cons. J Neuroanaesthesiol Crit Care 2017;4:S85-7.
Dube et al., in supratentorial craniotomy no difference in post-operative cognitive function was found between desflurane and sevoflurane. This finding is supported by some more recent studies.

Its adverse clinical effects on the pulmonary system include respiratory depression, airway irritation and bronchospasm. Respiratory irritation can occur at 1–1.5 minimum alveolar concentrations (MACs). Factors influencing airway irritation includes age (more in younger age group), opioid administration (reduces incidence) and smoking. Desflurane is not approved for induction and maintenance in paediatric patients for its irritative properties. Laryngeal mask airway removal following desflurane anaesthesia in children below 6 years warrant caution because of a high incidence of undesirable responses (coughing, laryngospasm). In adult patients with chronic obstructive pulmonary disease, desflurane might precipitate bronchospasm and hypersecretion. Its potential to increase airway resistance at higher MAC values questions its usage in this subset of patients. Central depression of respiratory drive is greater with desflurane in comparison to isoflurane.

Neurologically, desflurane administration causes dose-dependent vasodilatation and increases the cerebral blood flow (CBF). At >1.5 MAC, vasodilatation caused by desflurane is higher compared to halothane. Desflurane, when used in children for rapid emergence from propofol anaesthesia was associated with increase in middle cerebral artery blood flow velocity which may be clinically significant in patients with intracranial pathology. In animal studies also desflurane was found to cause more cerebral vasodilatation and higher ICP than isoflurane at normocapnia which was not significant with hypocapnia. In eight non-neurosurgical procedures, desflurane at a concentration of 1 MAC or above found to cause significant impairment in cerebral autoregulation. Compared to isoflurane cerebrospinal fluid production is more with desflurane, raising concerns of ICP rise.

Desflurane has been shown to cause relaxation of the neuromuscular junction and potentiates the action of neuromuscular blocking drugs to a greater degree as compared to isoflurane. The prolongation of response times with desflurane can assume clinical significance and is undesirable in patients with pre-existing neuromuscular weakness like Guillian-Barre syndrome.

Last but not the least, without the use of low flow techniques, closed circuits and efficient scavenging techniques, the overall cost of anaesthesia tends to be higher and is associated with implications of environmental pollution.

The benefits of early recovery from anaesthesia in neurosurgical patients administered desflurane should be considered with risks such as haemodynamic instability and increase in ICP.

CONCLUSION

Desflurane, in spite of the plethora of advantages surrounding its use, is not devoid of its share of adverse effects. Its cardiovascular effects (higher sympathetic surges), intracranial effects (higher CBF and CSF production at higher MAC’s), potential to cause malignant hyperthermia, higher costs and propensity to cause environmental pollution limits the advocacy of its universal applicability. Neuroanaesthesiologists thus should be aware of these limitations of desflurane and individualise its application on case to case basis.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

2. Wedel DJ, Gammel SA, Milde JH, Iaizzo PA. Delayed onset of malignant hyperthermia induced by isoflurane and desflurane compared with halothane in susceptible swine. Anesthesiology 1993;78:1138-44.


